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Abstract

In this thesis, we extract the waterway information from OpenStreetMap (OSM)
data and organize it into a directed graph so that we can observe the tributaries of
each river clearly. We rearrange the river map in such a way that each river looks
like a single subway line starting at its source until its mouth, that is, each river
segment is labeled with all its tributaries so far. For example, as a river drains o�
into the Rhine, the Neckar will be labeled on the Rhine as a parallel line. Eventually,
the main stem of the Rhine will look like dozens of small subway lines next to each
other. We use our tool LOOM (Line-Ordering Optimized Maps), which renders line
graphs in a metro-map style, to present the result in the above-described way.
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Zusammenfassung

Diese Arbeit behandelt die Extraktion von Wasserwegen aus OpenStreetMap (OSM)
und deren Überführung in einen gerichteten Graph in dem jede Kante sämtliche
Zuflüsse enthält. Wir visualisieren diesen Graphen so, dass jeder Zufluss einer U-
Bahn-Linie entspricht, die von der Quelle bis zur Mündung verläuft. Auf diese
Weise sind für jeden Flussabschnitt alle Zuflüsse ablesbar. Mündet ein Fluss wie der
Neckar beispielsweise in den Rhein, erscheint der Neckar als parallele Linie auf allen
folgenden Abschnitten des Rheins, bis der Rhein schließlich eine Ansammlung von
dutzenden von parallelen ursprünglichen Zuflüssen ist. Wir nutzen LOOM (Line-
Ordering Optimized Maps) um diesen sogenannten Line-Graphen in den Stil einer
U-Bahn-Karte zu überführen.
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1 Introduction

1.1 Motivation

As a collaborative project to create a free editable map of the world started in 2006,
OSM has been developing rapidly and has been favorably compared with propri-
etary data sources1. Prominent users of OSM include Facebook, Apple, Microsoft,
Amazon Logistics, Uber, and so on. At the same time, thanks to the open data
feature of OSM, a variety of tools orienting real-world needs are developed by dif-
ferent people and companies. LOOM (Line-Ordering Optimized Maps), is one of
these tools which can automatically generate geographically accurate transit maps
[BBS18]. The input to LOOM is data about the lines of a transit network: for each
line, its station sequence and geographical course [BBS18]. Then an elegant transit
map will be drawn according to their geographical course, and this transit map can
be used as an overlay of geographical maps. In this thesis, we try to explore the
possibility of applying LOOM to river maps. The motivation is that river maps have
similar input to metro maps and they can also make use of the result that LOOM
presents.

1.2 Our River Map vs. Metro Map: Similarities and
Di�erences

1.2.1 Similarities

A metro map, or schematic transit map, is a topological map in the form of a
schematic diagram used to illustrate the routes and stations within a public transport
system2. We say our river map is metro-map styled for the following reasons:

1. We ignore the geographical width of rivers and regard them all as single lines.
2. When a tributary river contributes to its stem river, we see it as an extension

of the tributary river, rather than the vanishing of the river. In this way,
rivers can go from the source all the way to the sea and gather at the mouth,
resembling metro lines going from the outskirts of the city all the way to the
city center, gathering there.
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1.3 An Example

1.2.2 Di�erences

Metro maps are often not based on the exact network geography. This is because
passengers are usually not concerned with geographical accuracy and are more inter-
ested in how to get from one station to another as well as where to change vehicles3.
Yet our river maps can be used as overlays of actual maps, which means they are
geographically accurate. Consequently, there are two characteristics of some metro
maps which our river maps do not have:

1. For metro maps, all the stations, or nodes in the context of a directed graph,
are usually more or less equally spaced rather than a geographic map.

2. In metro maps, in order to be neat and esthetically pleasing, sometimes there
is an “underlying grid”, primarily rectilinear or octilinear.

1.3 An Example
Here is an example illustrating this project. We have a screenshot of a map, which
is an area near Karlsruhe, Germany. We can observe the Rhine and other small
rivers on the map, but unfortunately, it is not recognizable which river consists of
which tributaries.

Figure 1.1: Rivers near Karlsruhe (original)
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Chapter 1 Introduction

Now we have the result of our project expressed by LOOM of the same area. As
we can see, only the information of the river system is shown in the picture, which
is more straightforward to the observers. Besides, the rivers and their tributaries
are represented clearly, and each tributary has a unique color. The Rhine and its
tributaries flow from the south to the north. In the middle of the image, there are a
couple of conspicuous canals that resemble the fingers of a hand, they are the Rhine
ports of Karlsruhe that were built to transfer oil.

Figure 1.2: Rivers near Karlsruhe (rendered)

When rivers gather at its stem, the colors of them could be hard to distinguish,
therefore the Rhine ports of Karlsruhe looks brownish in this picture. But when
we zoom in, we can still observe the colors of their tributaries, as in the following
image.
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1.3 An Example

Figure 1.3: Rivers near Karlsruhe (zoomed in)

1https://en.wikipedia.org/wiki/OpenStreetMap
2https://en.wikipedia.org/wiki/Transit_map
3https://en.wikipedia.org/wiki/Harry_Beck
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2 Related Work

Since metro map layouts are of high practical relevance, they have been studied
extensively in the past. Our work is related to previous work on many topics,
including map construction, crossing minimization and schematic metro maps.

1. Map construction. A map construction algorithm produces the graph of an
underlying network from vehicle tracking data. In [AKPW15], there is an overview
of map construction algorithms. Other than the existing work on street networks,
in our approach, the input data already represents a multigraph and on that basis,
we want to reorganize it into a directed graph.

2. Crossing minimization. In [BNUW07], the problem of minimizing intra-edge
crossing in transit maps was introduced. The term MLCM, representing metro-line
crossing minimization problem, was coined in [BKPS08]. In [ABKS08], [ABKS10]
and [Nöl10], several variants of MLCM were defined, and for some of these variants,
e�cient algorithms were presented. An integer linear program (ILP) formulation
for MLCM under the periphery condition was introduced in [AGM08], that is, lines
ending in a station must be drawn at the left- or rightmost position in incident edges.
While most research in the MLCM comes without experimental evaluations and
without the production of actual maps, the article [BBS18] presents an automatic
map generator which can yield visually pleasing maps e�ciently, meanwhile, these
maps can be used as overlays in actual maps.

3. Schematic metro maps. There is also research focusing on drawing schematic
metro maps, for instance, by restricting the transit lines to octilinear polylines
[HMN06], [BBS20] or Bézier curves [FHN+13]. These approaches, like we mentioned
in the introduction part, often strongly abstract from the geographical course of the
lines. Thus the resulting maps usually can not be used as overlays in typical map
services.
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3 Data Extraction and Storage
Structure

Before we explain how the program processes step by step, we need to illustrate how
the structure of the data, that is, the class RiverGraph looks like and why it should
be designed in that fashion.

3.1 Data Extraction

As an open-source data project, OSM provides geographic data of the world which
can be used in the production of paper maps and electronic maps, geocoding of
address and place names, and route planning1. Apparently, the information on
waterways is only a small fraction of OSM data. So the first step of our work is to
find out the data we need and to store it properly.

3.1.1 OSM Data Structure

OSM data has three kinds of elements, that is, nodes, ways and relations. All of
them can have one or more associated tags describing the meaning of the particular
element. In an osm file, these three types of elements are presented in the order of
their ids, that is, all the nodes from the least id to the greatest id in the first place,
and then all the ways and all the relations in the same manner.

• A tag consists of two items, a key and a value. Tags describe specific features
of map elements (nodes, ways or relations)2. For example, when a way has a
tag with the key “waterway” and the value in one of the followings: “river”,
“stream”, “canal”, “drain”, “ditch” or “brook”, then this way is the talweg3,
i.e. the deepest points of a riverbed, which is related in our project.

• A node is a single point in space defined by its latitude, longitude and node
id4. Specific to our project, a river is composed of numerous nodes in the
downstream direction, that is, in the direction that the river flows from source
to sea.

• A way is an ordered list of between 2 and 2,000 nodes that define a polygonal
chain5. The contained nodes are referenced by their ids. Normally, a way
has at least one tag or is included within a relation6. In our project, the
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Chapter 3 Data Extraction and Storage Structure

talweg of waterways are noted in the pattern we said in the tag part above.
For large rivers that are wide enough to require mapping of distinct areas of
water banks, more ways with other kinds of tags are used, but in this thesis,
since we regard the rivers as metro lines, that information is insignificant.

• A relation is a multi-purpose data structure that documents a relationship
between two or more data elements (nodes, ways, and/or other relations),
for example, a highway route, a turn restriction or a multi-polygon7. Relations
are also unessential to our project.

3.1.2 Extracting Procedure

The extraction of the needed data is done by the class OSMFilter. First, we go
through the ways of the given osm file, by doing so, we can filter out the related
ways which represent the talwegs of waterways and save the needed information,
that is, the node ids which build up the respective way, the name of the way, and
the type of the way (whether it is a stream or a canal, and so on). Now we have the
ids of the nodes that make up the needed way, but we do not have the latitude and
longitude information of them. So the second step is to go through the osm file for
another time, find out and store the geographical information of the related nodes.

3.2 Storage Structure

Basically, we have three kinds of unordered_map type structures, respectively for
the storing of nodes, edges, and rivers. For the last one, some kind of structures are
temporary and will be rearranged into new structures, the details will be illustrated
in the following sections.

3.2.1 Node Map

The key of the node map (_nMap) is the id of the corresponding node, the type of
the key is uint64_t. The value is the instance of class RiverNode. In this class,
other than the longitude and the latitude of each node, there is a third attribute
presenting the edges in this node (_eInN), which has the type unordered_set and
tracks the ids of the edges containing this node. Clearly, there is at least one edge
in this set. In OSM data, if one can go from one part of the river to another part
of the river via the water, there has to be a piece of waterway=* between them.
This implies that a way tagged as waterway=* should not stop on the riverbank of
another river, but should proceed to the central way of the other river8. Follow this
topology, if there are more than one edges in the set _eInN, then the given node is
an intersection point of multiple rivers or river segments.
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3.2 Storage Structure

3.2.2 Edge Map

For the edge map (_eMap), similar to the node map, the key is also the id of the
corresponding edge, and the type of the key is uint64_t. The value is the instance
of class RiverEdge. In this class, there are the following attributes:

• The name and the type of the river edge.
• The nodes representing the edge.
• River id: the edges with the same name and intersect with each other share

the same River id, and they build up the same river group. We will discuss
this further in section Sorting Rivers of chapter 4 .

• River in edge (_rInE), which is the set of upstream rivers of the current river
edge.

3.2.3 River Map

The river map keeps all the rivers. By having a map like this, we can centralize all
the river-related information, and use it in the data processing phase, for example
in length filtering and in adding river colors.

The key of the river map (_rMap) when we extract the river information is the
name of the river, it has the type string. But that brings problems in some cases.
The rivers with the same name do not necessarily intersect with each other, that
is, they can have the same name only by accident. This happens especially in
small streams. For example, in Baden-Württemberg, a state in southwest Ger-
many, in which the Black Forest is located, there are 228 river edges with the name
“Schwarzenbach” (in English: black stream). These streams of the same name
spread widely in the Black Forest, and many of them have independent sources, as
shown in picture 3.1. In this case, we need to group the ones concatenated with each
other (either directly or indirectly) together as the same river and separate the ones
which do not intersect. In this procedure, the key of the type string is abandoned
and a new key of the type uint64_t is used, it comes from the id of the first chosen
edge.
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Chapter 3 Data Extraction and Storage Structure

Figure 3.1: “Schwarzenbach” in the Black Forest

The value of the river map is the instance of class River. In this class, there are
the following features:

• The length, the name, and the color of the river.
• Edge in river (_eInR), representing edges in this river, and it has the type

unordered_set.

3.2.4 Storage Class

The extracted data of nodes, edges and rivers are stored in the class RiverGraph, it
has three private map attributes representing the corresponding data types.

1https://en.wikipedia.org/wiki/OpenStreetMap
2https://wiki.openstreetmap.org/wiki/Tags
3https://en.wikipedia.org/wiki/Thalweg
4https://wiki.openstreetmap.org/wiki/Node
5https://wiki.openstreetmap.org/wiki/Elements
6https://wiki.openstreetmap.org/wiki/Way
7https://wiki.openstreetmap.org/wiki/Relation
8https://wiki.openstreetmap.org/wiki/Tag:waterway=river
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4 Data Processing

After extracting and storing the needed information, we want to integrate our data
into a directed graph so that we can analyze and rearrange it conveniently. Our
final goal is to add the name of every tributary river to its stem river and gain an
output in which the tributaries of the rivers can be easily observed. To illustrate
this procedure, we will first show the baseline we set for the extracted data, and
then introduce the data processing procedure in general. After that, we will split
the procedure into six steps (section 4.2 to 4.7) and in each step, we explain why we
do it like this and how we are doing it.

4.1 Baseline and Basic Procedure

4.1.1 Baseline

In terms of building a baseline, we keep the procedure in a simple way. We consider
the following functions as the ones the baseline should have:

1. Using the river itself as its only upstream river.
2. Filtering river length by its own length without checking its upstream rivers’

length.
3. Using the same color for all the river lines.
By following these key points for the baseline, all the waterway related data should

be loaded from the osm file. After that, we do not reorganize the river edges into
a directed graph and we sort the rivers right away. That means, we split the rivers
with the same name but do not intersect with each other, and we use the edge ids
as the keys of the river map instead of river names. The next step would be to add
dummy upstream river names, that is, to add only the river itself as its upstream
river. In the length filter part, the rivers are simply filtered by their own length. In
the last step, all the edges will have the same blue color with the hex value #0000ff.
The following is a graph illustrating the progress of the baseline.
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Chapter 4 Data Processing

start

Sort Rivers

Add dummy
upstream river

Set river
ignored flag

Remove
ignored rivers

and related
nodes, edges

Add same
color to rivers

Figure 4.1: Process for baseline

4.1.2 Basic Procedure

As a comparison, we draw the procedure of our program as well. Comparing this
with the baseline, it is easy to observe that the intersection points are clearly marked,
the lines are colorful and the length filter is more accurate and reasonable. We will
illustrate the respective steps (organizing nodes, sorting edges, sorting rivers, adding
river names, length filter and adding river colors) in the next sections.
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4.2 Organizing Nodes

start

Organize Nodes

Second
time called? Sort Edges

Sort Rivers

Add up-
stream rivers

Set river
ignored flag

Remove
ignored rivers

and related
nodes, edges

Add colors
to rivers

no

yes

Figure 4.2: Process of our program

4.2 Organizing Nodes

First, we want to deal with the nodes of the graph. In the current river map data,
if we want to go from any source to its sea, three kinds of points are significant.

• The starting points. An eligible source is the first node of a river edge and
this node is not an intersect point with any other river edges.

15



Chapter 4 Data Processing

• The intersection points. A node that is referenced by two or more edges is an
intersection point.

• The destination points. A destination point is a qualified mouth, which is the
last node of a river edge and does not intersect with any other river edges.

So in the first step, we want to mark these points, so that when we add the name
of a tributary river to a stem river, we know that we are going in the right direction
and no tributary river names are left out. We mark the in and out information
for these significant nodes, the number of ins represents how many river edges are
flowing into this node and the number of outs represents how many river edges are
flowing from this node. By means of this step, the starting points will have in = 0
and out > 1, the intersection points will have in + out > 2 (in and out both ”= 0)
and the destination points will have in > 1 and out = 0.

4.3 Sorting Edges

The next step is to organize the edges. There are two sub-steps: splitting edges and
concatenating edges.

4.3.1 Splitting Edges

For the river edges which cross the intersecting nodes, we need to split them at the
intersection point, in order to avoid mistakes in the name adding phase. We explain
this via the following pictures.

1 2 3

4

B

A

Figure 4.3: A possible intersecting point of rivers

Suppose we have two river edges A and B, and they intersects at the point 2. If
we add the name of river A directly into river B, then the result will be inaccurate,
because river A is not yet a tributary of river B between points 1 and 2. So we need
to split rivers at intersection points to get the correct output, as shown in the next
image.
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4.3 Sorting Edges

1 2 3

4

B A, B

A

Figure 4.4: The proper result after adding names

In this procedure, if a river edge needs to be split, only the first section will keep
the original edge id. For the next sections, new edges with new ids will be created,
and the related information (river name, river type, etc.) will be copied to the new
river edges.

4.3.2 Concatenating Edges

To make the directed graph more compact, we concatenate the two river edges with
the same river name at the point that only these two edges intersect in a successive
way, that is, the last node of the former edge intersects with the first node of the
latter edge. In OSM data, there are many fragmented river edges which hinder the
observation of the rivers, here is an example of two actual rivers before and after
concatenation.

Figure 4.5: Two rivers before concatenation

17



Chapter 4 Data Processing

Figure 4.6: Same rivers after concatenation

As we can see, there is still a breakpoint in the river “A�engraben”, this is because
the central line of the two river edges does not overlap, that is, the last node of the
prior river and the first node of the subsequent river are not the same node. This
does not meet the topological rules of OSM data, and we will talk about this further
in chapter 6 .

4.4 Sorting Rivers

In this step, as mentioned in the River Map section of chapter 3 , the river name
map extracted from the original OSM data will be deleted and a new map with
river ids as keys will be stored. The river id is the first explored id of the edge
in the current river group. At the same time, the river id is also stored in the
relevant edges of the edge map so that we can reference the river information from
each edge.

After splitting edges, concatenating edges and sorting rivers, the node informa-
tion (which nodes are starting points, intersection points or destination points) will
probably di�er from before, so we organize the nodes again to get the current result
of ins and outs.

18



4.5 Adding River Names

4.5 Adding River Names

Now we want to add the name of the tributary river to its stem river. First, we find
globally the river source nodes and add them to the explore set.

Algorithm 1: Find all the global river source nodes
build_source_map (rg)

input : A RiverGraph rg
outputs: A List of RiverNode l

A Map of {RiverNode: Set of River} m

1 l Ω List();
2 m Ω Map();
3 foreach RiverEdge re œ rg do

4 RiverNode rn Ω re.front_node();
5 if rn.in = 0 and rn ”œ l then

6 l.add(rn);
7 m.add(rn, {});

8 return l, m;

As mentioned in the section Organizing Nodes, the source nodes have in = 0 and
out = 1. We then add the river name of the edge beginning with the source node to
the edges beginning with the last node of the before-mentioned edge. The last node
of this edge must have in > 1. We subtract 1 from the in of this node. If the in of
this node becomes 0, then we add this node into the explore set. If a node has out
= 0, we wipe it out of the explore set. In this way, all the nodes with edges going in
will be explored, and all the tributary river names will be added to the stem river.

Actually, this approach is a variant of the breadth-first search (BFS) algorithm.
By using it, we can easily gather the upstream rivers, such that our final result is
accurate.

19



Chapter 4 Data Processing

To make the name adding procedure more clear, we write the pseudo-code here.

Algorithm 2: Add upstream rivers’ names to each downstream river, and filter
river by its total length
add_river_names (rg, riverLengthThreshold)

inputs : A RiverGraph rg
A length threshold value for filtering riverLengthThreshold

output: The updated RiverGraph rg

1 exploreNodes, riversInNode Ω build_source_map(rg);
2 while exploreNodes ”= ÿ do

3 RiverNode rn Ω exploreNodes.pop_front();
4 foreach RiverEdge re œ rn.referenced_edges() do

5 if rn ”= re.front_node() then

6 continue

7 RiverNode rnNext Ω re.back_node();
8 rnNext.in Ω rnNext.in ≠ 1;
9 rnNext.out Ω rnNext.out ≠ 1;

10 if rnNext ”œ riversInNode then

11 riversInNode.add(rnNext, {});
12 River river Ω re.river();
13 if riversInNode[rn] ”= ÿ

or river.length Ø riverLengthThreshold then

/* Condition 1: the length of one of river’s upstream
rivers Ø riverLengthThreshold
Condition 2: river’s length Ø riverLengthThreshold
*/

14 river.ignored Ω false;
/* the default value of river.ignored is true */

15 re.upstream_rivers Ω
re.upstream_rivers

t
riversInNode[rn];

/* extend re.upstream_rivers with rivers in
riversInNode[rn] */

16 riversInNode[rnNext] Ω riversInNode[rn];
17 riversInNode[rnNext].add(river);

/* copy all rivers from riversInNode[rn] to
riversInNode[rnNext], and add current river to
riversInNode[rnNext] as well */

18 if rn.out = 0 then

19 riversInNode.remove(rn);
20 if rnNext.in = 0 then

21 exploreNodes.add(rnNext);

22 return rg;

20



4.6 Length Filter

4.6 Length Filter

During the name adding procedure, we also calculate the length of each river group
and check if it is less than the given filter value. Once we find a river with qualified
length, we will skip the length check for its downstream rivers. For edges related
to the unqualified river group, they will be deleted. And then the nodes which
are referenced only by the unrelated edges will also be removed. In the end, the
unqualified river group will be removed from the data as well.

4.7 Adding River Colors

For the color-adding procedure, we use the HSV (hue, saturation, lightness) model
rather than the RGB model, because the former is based more upon how colors
are organized and conceptualized in human vision in terms of other color-making
attributes, such as hue, lightness, and chroma; as well as upon traditional color
mixing methods, e.g. in painting, that involve mixing brightly colored pigments with
black or white to achieve lighter, darker, or less colorful colors1. Hence the HSV
model is more comprehensible when we are choosing colors. Here is the pseudo-code
of the color selecting process.

21



Chapter 4 Data Processing

Algorithm 3: Generate given number human eyes distinct colors
generate_colors (totalUsedColors, avoidColors, num)

inputs : A Set of HSV colors totalUsedColors
A Set of HSV colors avoidColors
An integer num

output: A Set of distinct HSV colors result

// minimum delta value for h, s, v
1 minDeltaH Ω 30, minDeltaS Ω 10, minDeltaV Ω 10;
2 result Ω {};
3 while result.size() < num do

4 hsv Ω HSV (h = 0, s = 0, v = 0);
5 v Ω a random integer in [19, 100];
6 if v < 20 then

// avoid to get too many not distinguishable black colors
7 hsv.h Ω 0, hsv.s Ω 0, hsv.v Ω 0;
8 else

9 hsv.h Ω a random integer in [0, 359];
10 hsv.s Ω a random integer in [0, 100];
11 hsv.v Ω v;
12 if hsv.v = 100 and hsv.s < 5 then // ignore color white
13 continue

14 else if hsv œ avoidColors or hsv œ totalUsedColors then

// avoid duplicated color
15 continue

16 else if avoidColors ”= ÿ then

17 isQualified Ω true;
18 foreach color œ avoidColors do

19 if hsv.v = color.v = 0 then

20 isQualified Ω false;
21 break

22 else if |color.h ≠ hsv.h| < minDeltaH
and |color.s ≠ hsv.s| < minDeltaS
and |color.v ≠ hsv.v| < minDeltaV then

23 isQualified Ω false;
24 break

25 if isQualified = false then

26 continue

27 result.add(hsv);
28 avoidColors.add(hsv);
29 return result;
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After having the right colors, we add these colors to our rivers.

Algorithm 4: Add color to each river
add_river_colors (rg)

input : A RiverGraph rg
output: The updated RiverGraph rg

1 totalUsedColors Ω {};
2 foreach RiverEdge re œ rg do

3 River river Ω re.river;
4 if river ”œ re.referenced_rivers() then

5 re.add_referenced_river(river);
6 avoidColors Ω {};
7 num Ω 0;
8 foreach River r œ re.referenced_rivers() do

9 if r has a color then

10 avoidColors.add(r.color);
11 else

12 num Ω num + 1;

13 generatedColors Ω
generate_colors(totalUsedColors, avoidColors, num);

14 foreach River r œ re.referenced_rivers() do

15 if r doesn’t have a color then

16 color Ω generatedColors.pop();
17 r.color Ω color;
18 totalUsedColors.add(color);

19 return rg;

4.8 Exporting Data to GeoJSON

Our tool LOOM expects the graph as a GeoJSON file, so the last step is to export
the output data in the right form. GeoJSON is an open standard format designed for
representing simple geographical features, along with their non-spatial attributes2.
The output file of our program consists of points and line strings in GeoJSON format.
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The following is an example of an output file composed of two points and one
edge. In this file, the edge indicating the Neckar with color #a4b020 goes from
the point “1656844591” to the point “507930239”, its upstream river set (“lines”)
includes only the edge itself.

1 {
2 " f e a t u r e s " : [
3 {
4 " geometry " : {
5 " c oo rd ina t e s " : [ 9 45322 . 1435861 , 6358143 .7429898 ] ,
6 " type " : " Point "
7 } ,
8 " p r o p e r t i e s " : {
9 " c o l o r " : " f f 0 0 0 0 " ,

10 " id " : " 1656844591 "
11 } ,
12 " type " : " Feature "
13 } ,
14 {
15 " geometry " : {
16 " c oo rd ina t e s " : [ 9 36620 . 2210671 , 6376420 .5050057 ] ,
17 " type " : " Point "
18 } ,
19 " p r o p e r t i e s " : {
20 " c o l o r " : " f f 0 0 0 0 " ,
21 " id " : " 507930239 "
22 } ,
23 " type " : " Feature "
24 } ,
25 {
26 " geometry " : {
27 " c oo rd ina t e s " : [
28 [ 945322 .1435861 , 6358143 .7429898 ] ,
29 [ 936620 .2210671 , 6376420 .5050057 ]
30 ] ,
31 " type " : " L ineSt r ing "
32 } ,
33 " p r o p e r t i e s " : {
34 " c o l o r " : " a4b020 " ,
35 " id " : " 514832816 " ,
36 "name" : " Neckar " ,
37 " l ength " : " 1 .0633858 " ,
38 " from " : " 1656844591 " ,
39 " to " : " 507930239 " ,
40 " l i n e s " : [
41 {
42 " l a b e l " : " Neckar " ,
43 " c o l o r " : " a4b020 " ,
44 " id " : " 514832816 "
45 }
46 ] ,
47 " type " : " r i v e r "
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48 } ,
49 " type " : " Feature "
50 }
51 ] ,
52 " type " : " Fea tu r eCo l l e c t i on "
53 }

This step is accomplished by the class GeoJSON.

1https://en.wikipedia.org/wiki/HSL_and_HSV
1https://en.wikipedia.org/wiki/GeoJSON
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5 Evaluation

We implemented our code on OSM maps of di�erent sizes within Germany, from
the city of Hamburg and Freiburg, to the state Bavaria, and finally to the map of
the entire country. As far as we know, our project is the first work on this topic,
so we do not have any other works to compare with. The following table shows the
results of the tests on a laptop with Intel Core i7 2,7 GHz (4 Cores) with 16 GB
Memory.

Map size Running time in
seconds

Amount of
points

Amount of
lines

Hamburg 588 MB 19 1148 953
Freiburg 2.16 GB 72 7142 6377
Bavaria 10.52 GB 362 26832 23549

Germany 56.96 GB 2019 124610 106394
From these results, we can observe the following characters of the program:

• The runtime of the program is rather short compared to the size of the data.
• The code is robust in large and complicated data sets.
• When the size of the data gets larger, the runtime of the program presents a

quasi-linear growth, which is e�cient and healthy.

In development, we keep using simple and e�cient data structures to avoid storing
duplicated information. We implemented the program in a well-organized way, for
example, we avoid nested loops which can cause exponential runtime growth. Added
to this, we constantly test it with fully covered unit tests and various large data sets
as robustness and stability measures.
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6 Possible Problems and Future
Work

6.1 Interruption Caused by Lakes
If a river drains into a lake, rather than into a sea, its route can be interrupted
because there is no proper waterway between this river and the downstream river
that it contributes to.

Figure 6.1: An example of interrupted rivers by a lake
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The above image shows the waterways around Ammersee, which is a lake in
Bayern, Germany. The main river called the Amper flowing from the south to the
north through the lake Ammersee was linked by a waterway edge. But at the same
time, we can see that many small rivers contributing to the lake were not lined to
the main river. They contribute to the Amper and eventually to the Danube and
the Black Sea. In OSM data, it is common that a river is cut o� by a lake and thus
can not run into the sea that it contributes to. Linking this kind of river to its stem
would be an improvement in our project.

6.2 Inconsistent OSM Data

In reality, there are always OSM data that do not meet the topological rules, iden-
tifying and correcting this kind of data will also make our project better.

6.2.1 River Loops

Loops can occur in the river map data of OSM, it can be a result of a wrong record
on river direction. For example, the following picture shows the node id and id
of the beginning node for each edge, and we can see that the edges beginning with
“1702935482”, “254853968” and “254853942” build a loop.
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6.2 Inconsistent OSM Data

Figure 6.2: An example of loop in river

When there is a loop in the data, the river names will not be correctly added for
the related rivers. The good news is that, due to our observation, river loops almost
only happen on small rivers which are often filtered by the length condition.

6.2.2 Breaking Points

As mentioned in the section Concatenating Edges of the chapter 4 , breaking points
lead to inaccuracy in the concatenation. Besides, breaking points also cause prob-
lems in adding river names. If two river edges are not properly linked at the same
node, the upstream river names could not be passed to the next node and the river
name information will be lost here.

6.2.3 Repeated Edges

Some edges in the OSM data are described repeatedly, and this will cause problems,
especially in the concatenation part.
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Figure 6.3: An example of repeated edges

Here is the ditch “Nördlicher Bahngraben” in Hamburg, it is marked in green color
in the above picture. This ditch is represented by multiple edges, among them, four
are expressed the same for two times (most of these are at the bottom right corner of
the image). In this case, the intersection points of these edges will be regarded as a
meeting point of three or four edges, therefore they can’t be concatenated properly.
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6.2 Inconsistent OSM Data

6.2.4 Wrong Direction of Rivers

Figure 6.4: River with wrong direction

In this image, we have the canal “Landscheide” described in two parts, but these
two edges have the same origin, which is the intersection point of them. Edges like
this can also not be concatenated in the right way. In nature, it is hardly possible
that the two rivers have the same source point. But in the OSM data, this could
happen.
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