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Abstract

In this thesis, we want to reproduce the results of the paper “Learning to Generate

Reviews and Discovering Sentiment” [Radford et al., 2017]. The authors achieved

extraordinary results on sentiment analysis by training a neural language model

on millions of product reviews to capture the concept of sentiment. Not only did

their model achieve this task, it also evolved a single unit which is responsible for

analysing the sentiment of the read data.

Our goal is to implement our own language model and analyse its capability to

evolve such a semantic, concept-containing unit following the approach described

in the paper. We are also interested to observe the extent to which the size of the

training data influences the overall performance. In addition to product reviews,

we train our language model on lyrics and emails. We want to see if a language

model can also learn to recognize different semantic concepts, such as the mood of

lyrics or to classify if an email is spam, with one single unit. While we do not quite

reach the results of the paper, our model’s best results approximates them. We also

analyse the existence of such specific semantic units in other areas of text analysis.

Furthermore, we describe a process with which we can identify potential semantic

units in language models.
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Zusammenfassung

In dieser Arbeit wollen wir die Ergebnisse des Artikels “Learning to Generate Re-

views and Discovering Sentiment” [Radford et al., 2017] reproduzieren. Die Au-

toren erreichen sehr gute Ergebnisse in der Stimmungsanalyse, indem sie ein neu-

rales Sprachmodell mit Millionen von Produktrezensionen trainieren, sodass es das

Konzept der Stimmung versteht. Dieses Modell erfüllt nicht nur diese Aufgabe,

sondern es bildet auch eine einzige Einheit heraus, die für das Analysieren der Stim-

mung des gelesenen Textes verantwortlich ist.

Unser Ziel ist es, ein eigenes Sprachmodell zu implementieren und seine Fähigkeit

zu untersuchen, semantische, konzept-enthaltende Einheiten herauszubilden, wie in

dem Artikel beschrieben wurde. Uns interessiert auch, inwiefern die Größe der Train-

ingsdaten das Ergebnis beeinflusst. Zusätzlich zu Rezensionen trainieren wir unser

Sprachmodell auch mit Liedtexten und E-Mails. Wir wollen sehen, ob ein Sprach-

modell verschiedene semantische Konzepte mit einer einzigen Einheit erkennen kann,

wie beispielsweise die Stimmung eines Liedtextes, oder ob eine Nachricht eine Spam-

E-Mail ist. Während wir die Ergebnisse des Artikels nicht ganz erreichen, kommt

unser eigenes Modell diesen nah. Wir analysieren zusätzlich die Existenx solcher

semantischen Einheiten in anderen Textanalysefeldern. Außerdem beschreiben wir

ein Prozess, mit welchem wir solche potentiellen semantischen Einheiten in Sprach-

modellen identifizieren können.
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1 Introduction

Determining the sentiment of a writer in respect to a certain topic has caught

the interest of the scientific community, but also sees applicability in other areas.

The business world can also profit from knowing what the customers prefer or dis-

like [Cambria et al., 2013]. Even the sentiment in financial news articles can help to

predict the future stock market [Lubitz, 2017]. In this thesis, we deal with the task

of classifying the polarity of a given text. That is to find out whether the expressed

opinion in this given text is positive or negative.

One of the main challenges in developing machine learning algorithms that anal-

yse sentiment is to convert these natural language expressions to a more processable

form. How a given text should be best represented to capture all important features

is a widely researched topic [Bengio et al., 2013]. We approach sentiment analysis

by focusing on this task of data representation.

Following the lead of [Radford et al., 2017], we train a neural language model to

represent and comprise the most characterizable features of a given text. Subse-

quently, these learned representations should contain the concept of sentiment when

the sentiment of the given training text is an important feature. We will elaborate

this intuitively over the next few paragraphs.

A neural language model tries to predict the next natural language instance (sen-

tences, words, characters, bytes) given a set of previous instances. We implemented

a character-level language model, such that it tries to predict which character most

likely follows a sequence of previous characters. By comparing the predicted charac-

ter to the actual next character and repeating this process consistently for the next

sequence of characters, the model learns and improves its prediction. This kind of

learning, where a model does not need to know the label (“positive” or “negative”)

of the given training text, is called unsupervised learning. In this case, the dataset is

called unlabelled. In contrast, models which need to know the associated label of a

given example perform supervised learning. They have to train on labelled datasets.
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To improve the guessing of the next character, the used neural language model

learns to best represent the essence of what it has already read. For simplicity,

let’s say that this representation is encoded as a vector called the cell state. This

vector represents the condensed summary of what the model has read before, and

is updated after every read character. Based on this summary, the model predicts

the next character.

As an example, the given text ”I hated this book! It was ” will certainly continue

differently than ”I loved this book! It was ”. A good language model should have

learned to identify such differences while training and predict different characters for

each of these starting sentences. A compilation of how three of our trained language

models predict how the sentences are continued can be seen in Table 1.1.

When training the language model on a large dataset of product reviews, it is

crucial for the model to recognize the sentiment of the data to accurately predict

the next characters. This means that the learned representation vector of processed

data, the cell state, has to perform sentiment analysis.

starting text predicted continuation

I hated this book!

It was

a waste of time and money.

so boring and the characters were so bad that I couldn’t even

finish it.

a little difficult to read and the story was so bad that I was

really disappointed in the story.

I loved this book!

It was

a great read and I would recommend it to anyone who likes a

good romance.

a great read and I couldn’t put it down.

a great read and I was so excited to read the next book in the

series.

Table 1.1: Example text generation from different language models given
two starting texts. The predicted next character was treated as the
actual next character to let the language models continue the sentence.

[Radford et al., 2017] implemented and trained such a language model on millions

of product reviews, achieving very good results on multiple sentiment datasets (see

section 2). They observed that one unit, which is responsible for exactly one value

in the cell state of their trained model, seems to be directly responsible for the good
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1 Introduction

results in sentiment classification. They called this unit their sentiment unit.

We aim to recreate their results by training our own implemented neural lan-

guage model on the same data. Furthermore, we evaluate it on the same sentiment

datasets using a similar supervised classifier. To further analyse what influences the

results, we train our language model on different subsets of data and while using

different hyperparameters. In addition, we are interested to see if other “high-level

concepts” [Radford et al., 2017, p. 1] can be learned and represented by a neural

language model. Therefore, we widen our line of research and test our approach on

other classification tasks by training our language model on lyrics and emails.

Although it does not reach the 91.8% achieved in [Radford et al., 2017], our best

trained model approaches this value, reaching a maximum accuracy of 87%. We

were also able to find our own sentiment unit responsible for this good result.

What follows now is a quick overview of our approach.

In this thesis, we describe a system which is a generalized version of the method-

ology presented in [Radford et al., 2017]. This system contains a neural language

model and a linear classifier, and can be used to identify a potential semantic,

concept-containing unit in the trained language model.

We start by choosing a semantic concept we want to train on. The focus here

is on sentiment analysis. After pre-processing the training data for our language

model, we train it given a set of chosen hyperparameters. Afterwards, we evaluate

how good the model has encapsulated the concept we are looking for. For this, we

use a labelled sentiment dataset and let our trained language model process the

containing examples. After processing the, the language model returns the respec-

tive representation of these examples. We use the representations of these sentences

as features for our linear classifier. After training this classifier, we inspect which

feature has the most influence for correctly classifying the sentiment. The unit of

the language model associated with this feature is a potential semantic, concept-

containing unit. To test to what extend this unit encapsulates the learned concept,

we train the classifier again. This time, we use only this particular unit as feature.

To further analyse what exactly influences the result of the whole model, as well as

the particular concept-containing unit, we try out different parameters and train on

different subsets of the training data.

The remainder of this thesis is structured in the following way. In the next sec-
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tion, we will present the approaches of other authors on sentiment analysis, which

also focused on data representation. In section 3, we introduce the main components

of our system: the language model as broadly described above and the linear clas-

sifier used to evaluate the learned representations. In section 4, we present how the

before mentioned components interact in the precess to find a concept-containing

unit. Section 5 contains the evaluation, where we describe our main results on sen-

timent analysis as well as spam and mood classification. We summarise our findings

in section 6.
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2 Related Work

In this section, we present three recent approaches on the task of sentiment analysis.

We selected models whose success roots in learning to represent raw data in a more

useful form and are therefore suitable comparison examples for our own approach.

The first comparison example is the unsupervised ParagraphV ector framework, in-

troduced in [Le and Mikolov, 2014]. The developed model is built upon the CBOW

and Skip-gram architecture [Mikolov et al., 2013], derived from word-level neural

language models. These architectures are used to learn vector representations of

words.

These fixed-size word vectors vw are trained differently depending on the archi-

tecture. Using CBOW, vw are trained by predicting the word wi given its context

wi−k, ..., wi−1, wi+1, ..., wi+k encoded as their representation vwi−k
, ..., vwi−1

, vwi+1
, ...,

vwi+k
. Using Skip-gram, vw are trained by predicting the context of a word wi given

its representation vwi
. These vw correspond to the word embedding of the under-

lying neural language model. The word vectors are trained to minimize errors in

their prediction. After training, semantically similar words have similar vector rep-

resentations. The introduced ParagraphV ector framework extends these models by

adding a new trainable matrix. In this matrix, each vector dp represents a paragraph

(or another variable-length entity like a sentence or document) of the training data.

While vw are shared across all paragraphs, dp are only shared across the respective

context.

For their different experiments on supervised datasets, the authors let both mod-

els train the paragraph and word vectors on the corresponding training data. Then,

they fed a concatenation of the matching paragraph vectors to a classifier. For

testing, the word vectors get fixed while the paragraph vectors get extracted and

evaluated by the trained classifier. On sentiment analysis datasets, the paragraph

vectors achieved very good results with 87.8 % and 92,58 % on a binary and 48.7 %

on a multi-class classification task [Le and Mikolov, 2014].
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The use of a neural language model to predict words and learning to best represent

a given text is a good comparison example to our approach. Two main differences

exist. First, we do not use the learned word or phrase embedding as representa-

tion but rather another part of our network, the cell state. Second, we train our

language model beforehand on a large unlabelled dataset and evaluate the learned

representations on related supervised datasets. In contrast, the paragraph vectors

are individually trained and tested on each dataset. This makes our model more

versatile because, once trained, it can be used to evaluate the learned representa-

tions on different datasets. In contrast, the paragraph vectors are more adaptive

and need less training data to achieve good results.

The second example of a model focusing on data representation is the skip-thoughts

model [Kiros et al., 2015]. Given a triple of consecutive sentences (si−1sisi+1), the

authors train an encoder-decoder model. This encoder-decoder model predicts or,

more fitting, reconstructs the previous si−1 and next sentence si+1 given the source

sentence si.

The introduced model consists of one encoder and two decoder networks, respec-

tively implemented with a recurrent neural network (RNN). The encoder takes the

source sentence si and translates it into a fixed-size vector h, representing the hidden

state of the RNN (for details see section 3.1). The decoders take h and predict the

next sentence si+1 and the previous sentence si−1 respectively. The encoder has to

learn to represent the current sentence as best as possible in order for the decoders

to be able to truthfully reconstruct the surrounding sentences.

After training the skip-thought model on a large book corpus, the authors ex-

tract and evaluate the respective representations of sentences in different supervised

dataset using a linear classifier. Tested on sentiment analysis, their model achieved

good results between 75% and 80% on different binary sentiment datasets with small

variations to their model [Kiros et al., 2015].

This approach resembles our own, especially the fact that we also use a large

dataset to train the model before the particular evaluation on a supervised task.

However, we do not train to predict the surrounding sentences of an encoded source

sentence. Instead, we train to predict the next character given one character and a

vector representing the meaning of the previously read characters.

The third model we want to present, byte mLSTM introduced by [Radford et al.,
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2 Related Work

2017], is the most relevant point of comparison as we follow the described methodol-

ogy and want to reproduce their achieved results. This third approach can be seen

as a combination of the two previously presented models. By training to predict the

next byte on a large text corpus, the network learns to represent the read in text

as a fixed-size vector. Once trained, the learned representation can be evaluated on

different supervised datasets.

Following the rough sketch in the introduction, [Radford et al., 2017] trained a

byte-level neural language model, consisting of a multiplicative LSTM with 4096

units, on approximately 83 million product reviews. The model learns to predict

the next byte given mainly the current byte and the previous cell state, as described

in section 1.

To evaluate the quality of this learned representation, the authors follow the proce-

dure of [Kiros et al., 2015] and use a linear classifier after extracting the respective

representations for phrases of different supervised datasets. Tested on sentiment

analysis, the introduced model advances the state-of-the-art to 91.8% and 92.88%

on two binary sentiment datasets. Inspecting which unit of the network has the

biggest influence on the classification, they discovered a single unit of their model

with an outstanding contribution. The authors deduct that this unit is responsible

for detecting sentiment in the processed phrase. Using just this single unit, they

achieve 91.87 % instead of 92.88%.

As stated before, we aim to reproduce these results by adapting the presented

methods. Nonetheless, our execution differs in three main points. First, our imple-

mentation of the language model is different (for details see section 3.1). Second,

we use different subsets of their used dataset to train our language model to anal-

yse the influence of the dataset size. Last, we not only train our language model

on sentiment data but also on data of two additional natural language processing

areas, to see if other concept-containing units can evolve in a language model.
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3 Components of Our System

In this section, we want to present the two main components of our implemented

system. Additionally, we will present background information that is necessary to

understand how these components work. These components are the neural language

model, presented in section 3.1 and the linear classifier, presented in section 3.2.

3.1 The Language Model

In this subsection, we present the main component of our system, the language

model. To give a better understanding of how our implemented neural language

model works, we first introduce neural networks in section 3.1.1. There, we also

present how these networks are used for language modelling. We go into more

details about our implementation of a neural language model in section 3.1.2.

3.1.1 Background: Neural Language Models

In general, a language model is a function that learns to capture the most promi-

nent features of a sequence of words, and assigns a probability to it. In particular, it

can be used to calculate the probability of a word given its preceding ones [Bengio,

2008]. We are interested in a character-level language model, so we will talk about a

sequence of characters from now on. The probability of a character cn dependent of t

previous ones can be depicted as the conditional probability P(cn|cn−t−1cn−t...cn−1).

There are different methods for calculating this conditional probability.

A neural language model, as introduced in [Bengio et al., 2003], uses a neural

network for calculating these probabilities. Neural networks are able to learn dis-

tributed representations of data. These distributed representations correspond to

a vector of features which characterizes the meaning of the read data. This func-

tionality is inspired by the ability of the brain to generalize characteristics. This

ability can be used to recognize similarities between a new object and already known
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3 Components of Our System

ones [Bengio, 2008].

There are different types of neural networks. In their simplest form, neural net-

works are known as Feed-Forward Neural Networks (FFNN). The structure de-

scribed in the following paragraph applies to FFNNs. Other types of neural net-

works build upon this basic structure.

Neural networks consist of units, also called cells or neurons, divided into three

connected layers. The input layer x, consisting of i units, represents given inputs as

a i-dimensional feature vector. For language modelling, each character is associated

with such a feature vector, for example encoded as an one-hot vector1. The hidden

layer h, consisting of g units, receives the encoded input. Based on this vector, a

trainable i×g weight matrix W and a trainable g-dimensional bias vector b, the hid-

den layer calculates its activation. Each unit in h contributes one activation value to

this activation vector, the g-dimensional output vector for the next layer. A neural

network may consist of multiple hidden layers with different numbers of units. Each

of these layers then has its own weight matrix and bias vector to calculate their acti-

vation vector based on the respective previous layer. The output layer y, consisting

of o units, receives in turn the calculated activations of the previous hidden layer.

It calculates its own activation based on a trainable c × o weight matrix V and a

trainable o-dimensional bias vector c. For language modelling, this o-dimensional

activation vector is interpreted as the prediction for the next character, matching

the encoding of the input layer.

This process of feeding the calculated activation to the respective next layer is

called forward propagation or forward phase. During training, the network learns by

comparing the predicted outputs to the correct one and hence updating all weight

matrices and bias vectors. This process of updating is called back-propagation or

update phase.

Language models built upon FFNNs have a disadvantage when dealing with sequen-

tial data like text; a character in a consecutive text is dependent on all previously

read characters, which cannot be modelled with a fixed-size input vector. For deal-

ing with this problem, a special kind of language model was introduced in [Mikolov

et al., 2010]: A Recurrent Neural Network (RNN) based language model.

RNNs are frequently used for natural language processing tasks as they are able to

1https://en.wikipedia.org/wiki/One-hot
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3.1 The Language Model

share previously read information across different timesteps. This is done by storing

the activation vector of hidden layer h at each timestep t. This activation vector is

used, together with the next character xt+1, W and b, to calculate the new activa-

tion of h at timestep t+1. This recursively passed g-dimensional activation vector

is called the hidden state of the RNN. The input and output layer stay unchanged.

For language modelling, this means that information about previous characters can

persist while the model only has to process one character at a time.

RNNs are trained by unrolling the network with an algorithm called back-propa-

gation through time (BPTT). When unrolling for t timesteps, the RNN can be

regarded as t connected FFNNs with shared W and b. In this construction, each hid-

den layer gets the according input vector xi and provides the prediction yi. Weight

matrices and bias vectors can now get updated as before for each yi. For how many

timesteps the RNN is unrolled during training is an important factor. It represents

how far an input character can directly influence future predictions. As the activa-

tion vector is passed to the next sequence of unrollings, a character might be able

to have further influence. Nevertheless, dependencies may not be discovered further

than this value t.

For better dealing with such log-term dependencies, RNNs with Long Short-Term

Memory cells (LSTM) were introduced in [Hochreiter and Schmidhuber, 1997]. A

LSTM memory cell can be seen as a wrapping around the original RNN unit which

form the hidden layer of the RNN. This wrapping consists of an input gate, an

output gate and a forget gate2 and decides which information will be stored to best

represent the previously read text. The LSTM memory cell calculates its activation

based on its previous activation vector, the input feature vector x, the weight ma-

trices of the gates and the activation of the wrapped RNN unit. The wrapped unit

in turn calculates its activation, as before, based on x and its previous activation.

This means that now two states are stored and shared across time: the activation

vector of the LSTM memory cells, called hidden state as they now form the hidden

layer3, and the activation vector of the wrapped RNN unit, called cell state.

2The forget layer was first introduced in [Gers et al., 1999]. In [Hochreiter and Schmidhuber,
1997], the wrapping only consists of the output and input gate. As we will be using the
implementation with the forget gate, we already introduce it here.

3Multiple LSTM cells which use the same gates are called as LSTM memory cell blocks. A LSTM
memory cell block of size 1 can be seen as one LSTM memory cell. These blocks are actually
the components of the hidden layer. For simplicity, when we speak of a LSTM memory cell,
we mean a LSTM memory cell block of size 1.
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3 Components of Our System

3.1.2 Our Implementation

We implemented our own neural language model, a RNN using LSTM memory cells,

using the framework provided by TensorFlow4. Before we are going to describe our

implementation, we introduce some important hyperparameters for training neural

language models:

• num layers represents the numbers of hidden layers in the network. In our

implementation we use one hidden layer.

• num units represents the number of LSTM memory cells and thus the number

of wrapped RNN units in our hidden layers. From now on, we use the term

“units” when we talk about these wrapped RNN units.

• num unrollings or seq length represents the number of steps the network is

unrolled for during training. As stated before, this value is quite important

as dependencies between characters might not be recognized further than this

number of characters.

• optimizer represents which optimization algorithm is used for updating the

weights and biases. In our experiments we use the Adam optimizer.

• learning rate influences how much the weights and biases are changed during

training. In our implementation we use a learning rate of 0.0005.

• batch size represents the number of text slices we train on in parallel.

• num epochs represents how many times the model iterates over the whole text

while training.

Our implemented model first reads in the given training text, slices it in batch size

segments and saves it. All unique characters get extracted and used for building

two dictionaries: a mapping from each character to an index (called char-to-id)

and from each index to the character (called id-to-char). These dictionaries allow

us to transform characters to unique numbers and back. We save the count of

unique characters as vocab size. The actual network gets initialized, based on the

provided hyperparameters, with a vocab size sized input layer, a num units sized

4https://www.tensorflow.org/
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3.1 The Language Model

hidden layer and a vocab size sized output layer5. The units of the input and out-

put layer represent the characters of the vocabulary, according to char-to-id, as an

one-hot encoded vector. The language model then trains on text segments of size

seq length× batch size by using the hyperparameters described above.

For testing our trained model, we set batch size and seq length to 1 as we do not

have to back-propagate. After processing a given start text, the predicted next char-

acter gets saved and fed right back as the input to get the next character. This way,

we are generating the most probable sequence of characters given the start text.

Furthermore, we implement a function which returns the cell state, the activation

vector of the wrapped RNN cells in the trained model, after processing a given se-

quence of characters. This functionality of the trained model is used for the classifier

described in section 3.2.2. and further outlined in section 4.

While developing our own language model, we used an implemented LSTM lan-

guage model from GitHub6 to get some preliminary results for our experiments.

These preliminary results are used for comparison with our achieved final results in

section 5.

Comparing our implementation to the one presented in [Radford et al., 2017], we can

note some major differences. The authors implemented a byte-level multiplicative

LSTM, an advanced LSTM which they observed to converge faster than an ordinary

one. They also used the TensorFlow framework but implemented their network (in-

cluding the LSTM memory cells, the various gates and the layers) from scratch, using

the formulae introduced in [Gers et al., 1999]. We cannot say much about further

differences as their model is not completely published7. According to their paper,

they trained their model using the parameters num epochs:=1, num layers:=1,

num units:=4096, batch size.=128 , seq length:=256, learning rate.=0.0005 and

optimizer:=Adam.

5The implementation of TensorFlow does not allow us to build a network layer by layer. We
instead use a dynamic rnn, consisting of BasicLSTMcells to represent the hidden layer and
a fully connected-layer to represent the output layer. The input layer gets implemented by
choosing the inputs for the dynamic rnn. For simplicity, we assume that we build the LSTM
layer for layer.

6https://github.com/crazydonkey200/tensorflow-char-rnn (21.5.2018)
7The authors published parts of their implementation on GitHub: https://github.com/openai/

generating-reviews-discovering-sentiment (20.05.2018). However, they did not include the train-
ing and load already trained parameters of the LSTM for testing purposes.
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3 Components of Our System

3.2 The Classifier

In this section, we attend to the secondary component of our system: the logistic

regression classifier. We introduce the basics of linear classifiers in section 3.2.1. In

section 3.2.2, we shortly present our implementation.

3.2.1 Background: Linear Classifiers

The goal of classification in the sense of machine learning is to use characteristics,

also called features, of an object and identify which class it belongs to. We will be

looking at binary classification; in sentiment analysis, this means that a class can

be 0 (negative sentiment) or 1 (positive sentiment). A linear classifier predicts a

class based on the features, commonly represented as a feature vector x, a learned

weight vector w (with the same dimensionality of x) and a learned bias value b. This

prediction can be seen as a decision function d(x) with

d(x) =

1 if
∑n

i=1 wi ∗ xi + b > 0, n: number of features

0 else

As this sum is a linear combination of the features, these classifiers are called linear.

For binary classification tasks, the separation of instances given their classes can

be visualized as the hyperplane w ∗ x = b, splitting the feature space accordingly.

During training, the classifiers try to find the best w and b given x and the label

of each training example. This can be seen as an optimization problem, which each

classifier solves in a different way [Schütze et al., 2008].

A logistic regression classifier, which we are using in our system, is a linear

classifier which uses the standard logistic function 1
1+e−t with t = w ∗ x + b to

solve this optimization problem [Yuan et al., 2012]. For evaluation, the probability

distribution of the positive class given a feature vector x can be calculated with

P (class = 1|x) = P (d(x) = 1) = 1
1+e−(wx+b) .

3.2.2 Our Implementation

In our system, we use the implementation LogisticRegression from the machine

learning library scikit-learn8. For training the classifier, we use labelled datasets with

8http://scikit-learn.org/
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3.2 The Classifier

a train/validation/test-split9. After reading in the dataset, we create the feature

vectors for all instances in the dataset. This is done by loading the previously

trained language model and using the implemented function to get the respective

cell state of the model after processing the given instance. This vector of size

num units is used as the respective feature vector for the examples in the dataset.

We make sure that the language model does not return falsified representations by

receiving text in an unexpected format. This is done by pre-processing the given

examples in the same way as the training data for the language model.

While training, we used L1-regularization to ignore irrelevant features [Radford

et al., 2017] and try different regularization strengths on the validation dataset

to find the best one for the given examples. Afterwards, we evaluate the trained

classifier on the test set and document the results.

To be able to compare our learned representations with the results of [Radford

et al., 2017], we used the same implemented classifier and procedure for training it.

9In some cases, the split is already fully or partially provided by the dataset. If this is not the
case, we create it ourself. For details see section 5.
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4 The Process of Finding a Semantic

Unit

In this section, we will look at how the components introduced in the last chapter

interact to find a potential semantic, concept-containing unit in the trained language

model. For this, we will walk through the steps we conduct in our experiments, which

are presented in the next section. This section is constructed to give an overview

of our developed system. For more details on the implementation of our language

model and our classifier, we refer the reader to section 3.1.2 and 3.2.2.

Choose a concept and matching data. First, we have to choose a concept

which the language model should train to encapsulate. Along with this, we have

to find datasets for the language model and the classifier which entail this concept.

To train a good language model, we need a large amount of unlabelled text to train

on. At the same time, we want to evaluate the learned representations on a related

labelled dataset. So before we can start the process of finding a concept-containing

unit, we have to fulfil both requirements and find matching datasets, preferably

formatted similarly for a truthful evaluation.

Pre-process data for the language model. After choosing the data, we have

to prepare the text for training the language model in a certain way. In our use

case, we have data consisting of multiple examples (see section 5 for details) and

not one continuous text. To show our model where an example starts and ends,

we pre-process the data and insert a start token (“\n”) and an end token (“ ”)

between the examples, following the methodology of [Radford et al., 2017]. We also

strip the example of other newlines, replacing them with whitespaces, and of trailing

whitespaces to not falsify the tokens. All pre-processed examples are then written

together to a txt-file.

Choose hyperparameters. Before training the language model, we have to

decide which hyperparameters to use as they can make a great difference for the

trained model. The hyperparameters relevant to our implementation are presented
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in section 3.1.2.

Start training the language model. We train the language model on the pre-

processed file with the chosen hyperparameters as described in section 3.1.2. We save

the used hyperparameters and path to the training data in a file for reproducibility

and future comparisons. Additionally, we have to save the dictionaries char-to-id

and id-to-char to load them for future use. This is important as the mapping from

character and index cannot be recreated and would ruin the trained language model

if the relation was lost. We save the trained language model after each epoch.

Optional: Test the language model. To sanity-check our trained language

model, we can let it generate text given a start text as described in section 3.1.2.

For this step, we need the saved hyperparameters to rebuild the model, the saved

dictionaries and the saved model. We may perform this step, especially in the early

state of tuning the hyperparameters, to recognize if something went wrong when

training the language model. Signs which hint that something is wrong may be

that the generated text consists garbled characters or that generated characters are

repeated over and over regardless of the start text. When this is the case, we have to

check our hyperparameters, training text and potentially the implementation of our

model. However, this step is optional as we can perform the next steps to inspect

the learned representations.

Train and test the classifier. With the trained language model and the labelled

classification dataset, we start training and testing the linear classifier as described

in section 3.2.2. The feature vectors used for training the classifier consist of the

activation values of the hidden units. Thus, the performance of the classifier depends

on the quality of the learned representations in relation to the concept we want to

test on.

Search for a concept-containing unit. We inspect the learned weight vector w

of the trained linear classifier and determine the highest weight value wi. We deduct

that the feature xi corresponding to this weight value has the highest significance

to the learned decision function d(x) (see section 3.2.1.). This feature corresponds

to the activation value of unit i in the learned language model after processing the

given example. Thus, we assume that this unit has learned to analyse the given

example in relation to the looked for concept, and to represent it in a single value.

Following this procure, the sentiment unit was found in [Radford et al., 2017].

To test the quality of this found unit, we train our logistic regression classifier

again on the same dataset, but only with the activation of unit i as feature. This
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4 The Process of Finding a Semantic Unit

means that the classifier has to learn exactly one weight value. The trained classifier

is now only dependent on this particular feature. We test the classifier as before

and document the results. When the resulting accuracy is good (which has to be

analysed individually; i.e. it can be defined as “better than guessing the most prob-

able class”), we have found a unit in our trained language model which corresponds

directly to a certain concept. Nevertheless, it is not given that the unit associated

with the highest weight value has actually learned the particular concept. This can

be seen when the performance of the classifier trained with only this activation value

does not approximate the performance when all activations are used. In this case,

the language model does not seem to have evolved a concept-containing unit. We

call these units, which are associated with the highest weight of the classifier but do

not achieve good results, undeveloped concept-containing units.

This process of finding a concept-containing unit can be conducted multiple times

with changed hyperparameters and a changed dataset to train the language model

on. This is interesting as it allows us to compare the results of the classifier and

analyse possible differences. In particular, we are interested to know which hyperpa-

rameters influence the results in which way. Additionally, we want to know to what

extent the amount of training text matters. The observations we made, together

with the documented results, are presented in the next chapter.

20



5 Evaluation

In this section, we will present our results achieved with the process we introduced in

the last chapter. We test our system on three different classification problems with

corresponding datasets, representing three different concepts which our language

model should learn to represent. These concepts are sentiment in reviews (section

5.1), the integrity of emails (decide if a mail is spam)(5.3) and mood in lyrics (5.2).

For each of these topics, we will present the used datasets and our results, also

compared to other approaches. In section 5.4, we will discuss the basic complexity

of our used algorithms.

For evaluation, we document the f1 score, recall and precision1 together with the

mean accuracy2. The first three scores are calculated in regard to the positive class,

representing respectively a positive review, a spam mail or a happy lyric. This means

that when a classifier always predicts the negative class, independent of the actual

labels of the testing examples, all three values are 0.

All language models for the experiments are trained on the cluster of the Chair of

Algorithms and Data Structures. The nodes consist respectively of Titan X GPUs

with 12 GB VRAM and Intel Core i7-6850K CPUs with 3.6Ghz each. For each of

the conducted experiments we use one GPU.

5.1 Sentiment Classification

First, we will present our datasets and results on sentiment analysis. This classifi-

cation problem is the main focus on our approach; accordingly, these results will be

explored and analysed in more detail than the following topics.

1respectively implemented with sklearn.metrics.f1 score, sklearn.metrics.recall score and
sklearn.precision score. See http://scikit-learn.org/stable/modules/model evaluation.html#precision-
recall-f-measure-metrics for more information.

2This is the result of the method score performed on the trained model given the feature vectors
for the testing examples and the correct labels.
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Similar to [Radford et al., 2017], we use the Amazon product dataset [He and

McAuley, 2016] for training our language model and the binary version of the Stan-

ford Sentiment Treebank (SST) [Socher et al., 2013] for training and testing the

classifier3.

The Amazon product review dataset exists in different versions. As [Radford

et al., 2017], we use the aggressively de-duplicated version4 which contains 82.83

million product reviews, spanning the years 1996 to 2014. Interestingly, the amount

of positive reviews heavily outweighs the amount of negative and neutral reviews;

the dataset approximately consists of 78% positive, 13% negative and 9% neutral

reviews. The source file of this dataset contains additional, for us not relevant in-

formation like the reviewer id and the date of the review. We parse this file before

pre-processing it (see section 4) so the training data for our language model only

consists of the actual text of the reviews. We conduct experiments using three dif-

ferent sized subsets of this parsed dataset to observe how the size of the training

text influences the representations learned by the language model. The composition

of these subsets can be seen in Table 5.1. For the biggest subset, we decide to use

the first occurring 20 million reviews of the original dataset. The composition of

this subset corresponds approximately to the composition of the whole dataset.

composition of subset

size of subset positive reviews negative reviews neutral reviews

200,000 100,000 100,000 0

2,000,000 1,000,000 1,000,000 0

20,000,000 15,643,930 2,654,532 1,701,538

Table 5.1: Composition of the used Amazon product data subsets.We call
a review positive if the respective star-rating is 4 or 5, negative if it is
1 or 2 and neutral if is is 3.

The binary SST dataset comes with a training/validation/test split of 6920 train-

ing, 872 validation and 1821 testing examples. As the testing set consists of 909

3We use the same pre-processed version as [Radford et al., 2017], using only the text snip-
pets and matching labels without the parse trees which are part of the original dataset. The
authors published this version on https://github.com/openai/generating-reviews-discovering-
sentiment/data.

4http://jmcauley.ucsd.edu/data/amazon/ (12.06.2018)
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5.1 Sentiment Classification

positive and 912 negative examples, guessing the most probable class would amount

to a mean accuracy of 50.1 %. A short excerpt showcasing how the classification

examples look like is presented in Table 5.2.

sentence label

In its ragged, cheap and unassuming way, the movie works. 1

While the film misfires at every level, the biggest downside is

the paucity of laughter in what’s supposed to be a comedy.

0

I love the way that it took chances and really asks you to take

these great leaps of faith and pays off.

1

Lacks heart, depth and, most of all, purpose. 0

Table 5.2: Excerpt from the testing split of the binary SST dataset.

We conduct our sentiment analysis experiments on language models trained on three

different magnitudes of training text. In each case, we evaluate six combinations

of two different hyperparameters. We train our models for one epoch respectively.

The results of said experiments, following the process explained in section 4, can

be seen in Table 5.35. When looking at these results, we have to consider that the

weight matrices and bias vectors of the language model are randomly initialized at

the start of training; small fluctuations can be explained with better or worse start-

ing conditions.

We make three major observation based on the achieved results.

First, we notice that no concept-containing unit, in these experiments a sentiment

unit, emerges when the language model was trained on 0.2 million reviews. This is

clear as the mean accuracy does not rise higher than 0.53. The model in general

seems to have already learned to recognize sentiment in a very broad sense. This

can be concluded as all scores are situated in the range between 0.6 and 0.7, which

is better than simply guessing.

When trained on 2 million or more reviews, the respective language model seems

5After training these language models, we change the batch generation in the code due to dis-
covering a bug. This means when retraining the language models, small changes in the results
as well as in the needed time could be observed. Because of the time it would take to retrain
all language models, we were not able to do this. However, we assume that this difference does
not matter much in the overall picture.
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to have evolved a sentiment unit with each of the chose hyperparameters. The scores

of the classifier based on this unit alone often reaches the ones where all units are

considered.

Second, we see that while there is a considerate improvement of all scores be-

tween 0.2 and 2 million reviews, we do not observe such a big leap between 2 and

20 million reviews. We may conclude that we experience a capacity ceiling with our

implemented language model where the result does not get significantly better even

if we use more training data. A factor for the lack of considerate improvement may

be the ratio of positive to negative reviews as the 20 million review subset consists

of 75% positive reviews.

Third, we observe the importance of the chosen hyperparameters to be lopsided.

The number of units in the hidden layer of the language model (num units) seems to

make quite a difference; increasing it almost always achieves better results, particu-

larly raising it from 1024 to 2048. In contrast, the number of unrollings (seq length)

does not seem to have an obvious influence.

A visualization of the unit contributions of one of the best trained classifier can

be seen in Figure 5.1a. We notice that the unit at index 2034 has by far the highest

associated weight, i.e. this is our found sentiment unit. Another interesting detail is

that of the 2048 possible features, the classifier only assigned 18 a non-zero weight.

It seems that the language model distributed the analysis of sentiment mainly to

one unit with only 17 supportive units. We may conclude that the higher the differ-

ence of the associated weight to the other weights, the better specialised the found

unit is in analysing the examined concept. Subsequently, the result of a classifier

using only this unit as feature should be good if the weight difference is high. In

the conducted experiments where the language models were trained on 0.2 million

reviews, we observe that the weight difference are overall small; this supports our

theory. This can be seen exemplified in Figure 5.2a.

We visualized the distribution of the positive and negative instances which form

the training split based on the cell activation value of this before-mentioned sen-

timent unit. This visualization can be seen in Figure 5.1b. We can see that even

without a trained classifier the found sentiment neuron can distinguish between a

positive and a negative phrase. An example how the according distribution of an

undeveloped sentiment unit looks like can be seen in Figure 5.2b.
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5.1 Sentiment Classification

hyperparameters all units used only sentiment unit used

seq length num units f1 recall pred acc f1 recall pred acc time

Language model trained on 0.2 million reviews

100

1024 0.65 0.68 0.62 0.63 0.64 0.87 0.50 0.51 0.2h

2048 0.67 0.71 0.66 0.65 0.64 0.82 0.52 0.53 0.7h

4096 0.69 0.72 0.67 0.68 0.66 0.94 0.51 0.51 2.7h

200

1024 0.64 0.68 0.60 0.64 0.67 1.00 0.50 0.50 0.2h

2048 0.64 0.69 0.59 0.61 0.67 1.00 0.50 0.50 0.6h

4096 0.67 0.70 0.64 0.65 0.67 1.00 0.50 0.50 2.7h

Language model trained on 2 million reviews

100

1024 0.75 0.76 0.73 0.74 0.71 0.80 0.65 0.68 2h

2048 0.79 0.80 0.78 0.79 0.77 0.81 0.74 0.77 8h

4096 0.83 0.84 0.82 0.83 0.81 0.84 0.79 0.81 32h

200

1024 0.71 0.74 0.69 0.70 0.66 0.65 0.66 0.66 3h

2048 0.79 0.80 0.78 0.79 0.79 0.82 0.76 0.78 8h

4096 0.82 0.83 0.80 0.81 0.79 0.83 0.75 0.78 33h

Language model trained on 20 million reviews

100

1024 0.75 0.76 0.75 0.76 0.73 0.75 0.71 0.73 25h

2048 0.85 0.88 0.81 0.84 0.84 0.89 0.89 0.84 79h

4096 0.87 0.90 0.85 0.87 0.87 0.90 0.83 0.86 329h

200

1024 0.77 0.79 0.76 0.77 0.77 0.77 0.76 0.77 24h

2048 0.85 0.86 0.84 0.84 0.79 0.83 0.76 0.78 80h

4096 0.87 0.90 0.85 0.87 0.82 0.88 0.77 0.81 326h

Table 5.3: Performances of the logistic regression classifier on the bi-
nary SST dataset dependent on hyperparameters seq length and
num units, and the amount of training data of the language model.
In each case, the language model was trained for 1 epoch; the displayed
time represents this duration. We compare the results of the classifier
using the activation values of all units, with the results using only the
activation value of the respectively found sentiment unit.

25



5 Evaluation

(a) Graph representing the unit contributions of the classifier.

(b) Histogram representing the cell activation values for the found sentiment unit (index
2034) on the training split of the dataset.

Figure 5.1: Visualizations of a good classifier trained on the binary SST
dataset. The associated language model was trained on 20 million
reviews with num units 2048 and seq length 100.
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5.1 Sentiment Classification

(a) Graph representing the unit contributions of the classifier.

(b) Histogram representing the cell activation values for the undeveloped sentiment unit
(index 132) on the training split of the dataset.

Figure 5.2: Visualizations of a mediocre classifier trained on the binary
SST dataset. The associated language model was trained on 0.2
million reviews with num units 1024 and seq length 200.
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As mentioned in section 3, we used another implementation of a language model for

preliminary results while developing our own model. The results of these conducted

experiments are in the range of those presented in Table 5.3, with small fluctuations

on both sides. As mentioned before, these fluctuations may occur based on the

random initialization of weights and biases in both implementations.

In our conducted experiments, we do not reach the result of [Radford et al., 2017]

on the binary SST dataset, namely 91.8% mean accuracy using all units as features

for the classifier and 90.2% using only the found sentiment unit. It is not clear if

we would measure up to these results by also using all 80 million reviews of the

Amazon product dataset; we would say its not very probable considering the lack

of considerate improvement between 2 and 20 million reviews. Nevertheless, our

results come near this number with the mean accuracy of the best classifier being

87% using all units and 86% using only the found sentiment unit. However, 87% on

this particular dataset is below state of the art as many other approaches surpass

it [Radford et al., 2017].

5.2 Spam Classification

Second, we will present our datasets and results on spam classification.

A challenge for our approach was finding matching datasets for our language

model and our classifier. We did not find a large-scale dataset containing emails

which were similarly formatted like the ones a smaller, labelled dataset. Therefore,

we created our own datasets for the language model and the classifier using the pre-

processed version of the Enron-Spam-dataset6, introduced in [Metsis et al., 2006].

The training data for the language model consists of 23,220 emails; 8,175 spam

and 15,045 non-spam, so called ham messages. The dataset for our classifier consists

of 3,000 e-mails, equally consisting of spam and ham messages. It has to be noted

that the length of these messages is very variable, partially because forwarded or

previous messages are mostly included when the respective mail is a reply or the

like. We create data split using 2100 examples for training, 300 for validation and

600 for testing, each with a 1:1 spam-ham-ratio. This means that guessing the same

class for every instance of the testing set would amount to a mean accuracy of 50%.

6http://www2.aueb.gr/users/ion/data/enron-spam/
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A short excerpt showcasing how these examples look like in their pre-processed form

is presented in Table 5.4.

email spam

Subject: young wifes click here to be removed 1

Subject: chart info here it is . 0

Subject: why pay for over priced pre \ scription dru @ gs ? ? ? 1

Subject: fw : revised michelle, sempra called on 21, 500 of needles

space from 11 / 01 through 10 / 02 . please see attached memo

from stepahie . thanks , tk [...]

0

Table 5.4: Excerpt from the pre-processed testing split of our created
spam dataset.

We conduct our spam classification experiments on six language models. As before,

those language models are trained with a different combinations of two hyperparam-

eters respectively. We train all our models for five epochs respectively. The results

of these experiments, following the process explained in section 4, are presented in

Table 5.5.

In general, the results are very lopsided. All trained language models achieve very

good scores when the activation values of all units are used. However, the accuracy

of the respective developed spam unit, if it exists at all, varies to a large extend. The

best found spam unit achieves a mean accuracy of 0.8 while the others lie within

the range of 0.5 and 0.7. Regarding these spam units, we observe two things. First,

language models trained with 200 unrollings achieve better results than their coun-

terpart trained with 100 unrollings. Second, the scores get worse when increasing

the number of units. These two findings are very surprising considering the experi-

ments on sentiment analysis. There, the number of unrollings did not seem to have

an obvious influence and the results actually got better with more units.

We have to keep in mind that the training data for the language model is rela-

tively small, approximately 10 times smaller than the smallest training dataset for

our sentiment experiments. This may be a possible explanation for our different

results; the random initialization of the weight matrices and bias vectors may have

a higher influence when there is not enough training data. Nevertheless, the large
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differences in performances of the found spam units surprise us.

hyperparameters all units used only spam unit used

seq length num units f1 recall pred acc f1 recall pred acc time

100

1024 0.90 0.91 0.89 0.90 0.68 0.67 0.69 0.68 0.9h

2048 0.93 0.96 0.91 0.93 0.63 0.71 0.56 0.58 2.1h

4096 0.95 0.97 0.94 0.95 0.67 1.0 0.5 0.5 6.9h

200

1024 0.90 0.91 0.90 0.90 0.80 0.77 0.82 0.80 0.7h

2048 0.93 0.95 0.91 0.93 0.66 0.70 0.63 0.64 1.9h

4096 0.95 0.95 0.94 0.95 0.61 0.64 0.58 0.59 6.9h

Table 5.5: Performances of the logistic regression classifier on our spam
dataset dependent on hyperparameters seq length and num units. In
each case, the language model was trained for 5 epochs; the displayed
time represents this duration. We compare the results of the classifier
using the activation values of all units, with the results using only the
activation value of the respectively found spam unit.

As with our sentiment classification experiments, we visualize the weights of the

trained classifier and the distribution of positive and negative instances based on

our found spam unit. For our best experiment on spam classification, these visu-

alizations can be seen in Figure 5.3a and 5.3b respectively. We notice again an

outstanding unit in the graph and a clear classification of positive and negative in-

stances in the histogram.

We compare our results with those of the previously used implementation, as men-

tioned in section 3. With this implementation and used hyperparameters num units

1024 and seq length 100, we achieved a mean accuracy of 91% using all units and

87% using a found spam unit after training for five epochs. The result of this spam

unit is a large improvements to all of the spam units found in our experiments,

especially to the one with the same hyperparameters.

We see two possible explanations for this deviation. First, this good result could

just be due to a very good starting constellation of the weights and biases. This

would support our theory that the model has not been able to optimize the weights
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5.2 Spam Classification

and biases because of the small amount of training data. Second, the other im-

plementation could be actually better at evolving a concept-containing unit. One

possible cause could be that our language model may be flawed when training over

multiple epochs. This may be the case as this large discrepancy does not exist when

training the language models for sentiment analysis for only one epoch. However,

our language models still seem to grasp the concept of spam very well when using

all units. It is very interesting to observe that a good representation using all units

is, in some cases, caused by one main unit, while in other cases such a main unit

does not seem to exist.

As we created our evaluation dataset ourselves, we have no direct comparison ap-

proach from other authors. This is why we implement a simple baseline algorithm.

We use the bag-of-word-model approach and convert the examples of the labelled

dataset to a vector consisting of tf-idf features7. Then, we train our linear classifier

on these feature vectors. The documented results can be seen in Table 5.6.

We can see that even a baseline algorithm achieves very good results on spam

classification. In almost all our experiments, we reach and surpass most of those

scores when training with the activation values of all units. Unfortunately, we ob-

serve that neither of our spam units approximates those scores.

However, we can still report the findings of evolved units in our language models

which are responsible for analysing if a mail is spam or not.

f1 recall precision accuracy time

0.92 0.98 0.88 0.92 1s

Table 5.6: Performances of the baseline algorithm on our spam dataset.

7We used the submodule sklearn.feature extraction.text.TfidfVectorizer in our implementation.
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(a) Graph representing the unit contributions of the classifier.

(b) Histogram representing the cell activation values for the found spam unit (index 183)
on the training split of the dataset.

Figure 5.3: Visualizations of a classifier trained on our created spam
dataset. The associated language model was trained with num units
1024 and seq length 200.
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5.3 Mood Classification

5.3 Mood Classification

Last, we present our used datasets and achieved results on mood classification of

music based on the lyrics analysis. In this specific case, we want to decide if a given

lyric is happy (relation to positive themes) or sad (relation to dark and violent

themes)8 [Raschka, 2016].

We use the songdata dataset9, containing 57,650 lyrics, for training our language

model and the MusicMood dataset10, introduced in [Raschka, 2016], for training

and testing the classifier. Both datasets contain in their original format additional

information like the artist and the song title. We parse these original file so that

both used datasets consist of only the lyrics. In this case, we already pre-process the

training data for the language model together with the dataset for our classifier as

we change one detail: instead of replacing all newlines with whitespaces, we replace

them with a “#”. This was done to keep the structure of the lyric while still be

able to pad the examples with newlines.

Originally, the MusicMood dataset consists of 1000 training and 200 testing exam-

ples. We split the training examples to achieve a train/validation/test split of 900

training, 100 validation and 200 testing examples. In contrast to the previously used

evaluation datasets, this one is a little unbalanced; there are 400 positive and 500

negative examples in the training split. This has to be kept in mind when analysing

the results. As the testing split consists of 105 positive and 95 negative examples,

a classifier always predicting the positive class would achieve a mean accuracy of

52.5%. A short excerpt showcasing the pre-processed examples can be seen in Table

5.7.

As with the other two classification problems, we conduct our mood classification

experiments with six language models trained on a combinations of two hyperpa-

rameters. The results of those experiments can be seen in Table 5.8.

8It has to be noted that these mood labels we are considering here are defined and manually
assigned by the creator of the MusicMood dataset. It’s questionable if those assigned labels
are indisputable.

9https://www.kaggle.com/mousehead/songlyrics (18.06.2018)
10https://github.com/rasbt/musicmood (18.06.2018)
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lyric mood

Where, oh, where have you been, my love?#Where, oh, where can you

be?#It’s been so long since the moon has gone#And, oh, what a wreck

you’ve made me## [...]

0

This kind of love makes me feel ten feet tall#It makes all my problems

fall#And this kind of trust helps me to hold the line#I’ll be there every

time## [...]

1

I’m a pop star threat and I’m not dead yet#Got a super-dread-bet with

an angel drug-head#Like a dead beat winner, I want to be a sinner#An

idolized bang for the industry killer## [...]

0

Country day#A day in the unknown#A gentle breeze gently blow-

ing#Country day#Country day#Another day in the unknown#I can

feel it in my bones#Country day## [...]

1

Table 5.7: Excerpt from the pre-processed testing split of the MusicMood
dataset.

It seems that none of our trained language models really grasps the concept of mood,

barely (if at all) reaching the 0.6 mean accuracy mark when using the activation

values of all units as features for the classifier. Considering this, it makes sense

that the models do not seem to have evolved a mood unit. The closest one with

such a mood unit might be the model trained with num units 4096 and seq length

100, which reaches a mean accuracy of 0.56. Fittingly, this model achieves the best

results using all units, namely 0.64 mean accuracy. The according visualizations for

this model can be seen in Figure 5.4.

It is also interesting to see that two of the undeveloped mood units predict the

less probable negative class for all testing instances. Subsequently, the f1, recall and

and precision scores are 0 and the mean accuracy is smaller than 0.5. This is most

probably the case because the training data contains more negative than positive

examples, as described above.

We see a possible cause in the overall underwhelming results in the amount of

training data for the language model. It may be that with more lyrics to train on,

the language model may evolve the ability to analyse the mood. However, it may

also be the case that the mood of a given lyric is not an important enough feature
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5.3 Mood Classification

crucial to truthfully predict the next character. In this case, more training data

would not amount to a better result. Thus, the concept which the language model

should learn to encapsulate may not have been a good choice.

hyperparameters all units used only mood unit used

seq length num units f1 recall pred acc f1 recall pred acc time

100

1024 0.32 0.21 0.69 0.54 0.33 0.22 0.64 0.53 2.2h

2048 0.58 0.51 0.68 0.62 0.22 0.13 0.67 0.51 4.2h

4096 0.60 0.50 0.73 0.64 0.40 0.29 0.68 0.56 12.7h

200

1024 0.43 0.32 0.64 0.55 0.07 0.04 0.67 0.49 1.6h

2048 0.57 0.51 0.65 0.6 0.0 0.0 0.0 0.48 3.5h

4096 0.60 0.56 0.63 0.60 0.0 0.0 0.0 0.48 12.1h

Table 5.8: Performances of the logistic regression classifier on the Mu-
sicMood dataset dependent on hyperparameters seq length and
num units. In each case, the language model was trained for 5 epochs;
the displayed time represents this duration. We compare the results of
the classifier using the activation values of all units as features, with the
results using only the activation value of the respectively found mood
unit.

We compare our achieved results again with the preliminary results achieved with

the previously used implementation. With hyperparameters num units 1024 and

seq length 100, this implementation achieved 65% mean accuracy with all units and

61% with a found mood unit. As with spam classification, we notice that these re-

sults are better than the ones obtained with our own implementation. This supports

our theory that our language models is flawed when training over multiple epochs.

In our conducted experiments, we do not reach the reported result of [Raschka,

2016], which is a 72.5% mean accuracy on the testing set11. As described before, we

may approximate this value when training our language model on a larger amount

of lyrics.

11The results described in [Raschka, 2016] are different from the ones reported on the corresponding
GitHub page https://github.com/rasbt/musicmood (22.06.2018). As the results on the GitHub
page seem more recent, we consider those.
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(a) Graph representing the unit contributions of the classifier.

(b) Histogram representing the cell activation values for the found mood unit (index 500)
on the training split of the dataset.

Figure 5.4: Visualizations of a classifier trained on the MusicMood
dataset. The associated language model was trained with num units
4096 and seq length 100.
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5.4 Analysis of complexity

In this section, we will discuss the basic complexity of our language model and clas-

sifier.

The computational complexity of training a LSTM network is depicted as O(B2 ∗
S2) where B is the number of LSTM memory cell blocks in the hidden network and

S the number of LSTM memory cells in those blocks [Gers, 2001]. This holds when

keeping the number of units in the input and output layer fixed. As described in

section 3, we use num units memory cell blocks of size 1. Therefore, the complexity

of our language model is O(num units2). This can also be observed when looking at

the running time of the language models depicted in Tables 5.3, 5.5 and 5.8. When

doubling num units, we notice a roughly four times increased runtime. This makes

sense as O((num units ∗ 2)2) = O(4 ∗ num units2).

Regarding the space complexity, [Gers, 2001] also states the overall number of

weights as O(B2 ∗ S2), assuming the number of units in the output and input layer

stay fixed. Subsequently, this amounts again to O(num units2) in our implemen-

tation. This correlates with the size of the language model savefiles which contain

the respective weights of the networks. Independent of the training data and other

hyperparameters, the savefiles of the language models have approximately a size of

20 MB if num units is 1024, 70 MB if num units is 2048 and 260 MB if num units

is 4096. We notice again the quadrupling size.

When considering the space complexity of our implemented language model, we

also need to note the fact that, after initially reading the whole training data, it

remains in the memory for the whole duration of the training process. As the ac-

cording training file can potentially be multiple gigabytes in size, we consider the

size s of the file as an offset to the previous complexity of O(num units2). This

results in a maximal space complexity of O(num units2 + s), assuming the units in

the output and input layer stay fixed.

Regarding the runtime of our implemented classifier, we observe the most time-

consuming part to be the extraction of the cell states which form the feature vectors

for the respective data splits. The needed time depends on the number of units,

the number of examples in the respective split and the length of these examples.

An overview of the runtime of the classifier trained for sentiment classification can

be seen in Table 5.9. The classifiers were trained on a Personal Computer with an
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Intel(R)Core(TM)i7-6700HQ CPU @ 2.60GHz processor and 16GB RAM. We can

see that the runtime is linear regarding the number of examples in the respective

split. When doubling the number of hidden units from 2048 to 4096, we notice a big

leap in the needed time. The runtime seem to quadruple, like we have seen when

training the language model, but we do not see this between 1024 and 2048 units.

There, the runtime only doubles.

time spend on feature vector creation

num units training split validation split testing split total

1024 20min 4min 7 min 33 min

2048 50min 8min 16min 75 min

4096 235min 40min 81min 360min

Table 5.9: Average runtime of the sentiment classifier. Together with the
total running time, we document the time spend on the creation of the
feature vectors for the respective splits. In the used binary SST dataset,
the training split consists of 6920, the validation split of 872 and the
testing split of 1821 examples.
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6 Conclusion

We have implemented a system, consisting of a neural language model and a linear

classifier, which can find potential semantic units in the trained language model.

The evaluation has shown that the system is able to find units in relation with dif-

ferent concepts, if such units have evolved during training.

On sentiment analysis, our trained language models were able to produce close re-

sults to those of [Radford et al., 2017], evolving their own sentiment unit responsible

for these good results. On other text classification tasks, our results are lopsided.

While our trained language models achieve very good results on spam classification

when using all units, the performance of their evolved semantic units differ to a

great extent. On mood classification, our trained models do not seem to evolve such

semantic units.

In the following, we will provide suggestions which could improve our overall

results.

• Train on more data. As we have seen when evaluating the language models

on sentiment analysis, more training data equals a better trained language

model. We assume that the results on all three classification problems can

be improved when at least doubling the training data. This will take a lot

of time, at least for sentiment classification, considering that our best model

in the sentiment experiments needed approximately 14 days to train on 20

million reviews. With the documented time, we estimate that the training

time of a model with the same hyperparameters quadruples when training on

all 83 million reviews of the Amazon product dataset.

• Change the feature vector. In the current implementation, we use the

cell state of the language after processing the given text as the feature vector.

Instead, we could save intermediate values while processing the given text and

build the feature vector based on these multiple values. We estimate that this

will not take a long time to implement. In fact, we have started with this
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6 Conclusion

implementation but could not finish it in time. When testing a preliminary

version, we got worse results with multiple values than with only one value.

• Revise the implementation of the language model. It seems that our

language model does not work as well as other implementations when training

over multiple epochs. A next step to improve the results on mood and spam

classification would be to look over the code and see if it can be optimised.

We estimate that this suggestion would take a few days.
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