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NEDard: Using Multi-Sense Embeddings for Named Entity Disambiguation

by Felix JABLONSKI

English This thesis deals with the task of Named Entity Disambiguation. When
analyzing a text, it is important to disambiguate mentions of entities such as peo-
ple, companies, or concepts so that multiple appearances of the same entity can be
identified as such. One way to disambiguate entities is to link them to their unique
entity in a so-called knowledge base. A knowledge base is a source that stores in-
formation about objects like companies, fruits, or people. In this thesis given a text
with mentions of such entities, ambiguous mentions are disambiguated and linked
to the correct entity in Wikidata. For example "Apple" as fruit or as the company.
This thesis proposes two new models (called NEDard and NEDardv2) to solve this
task. Machine learning is used to derive a comparable representation of mentions
depending on their textual context, and this representation is used to perform the
disambiguation. The models are compared to other approaches on different evalua-
tion sets. The evaluation has shown that the proposed models do not solve the NED
task better than the baselines. However, it has been shown that there is potential in
combining the proposed models with others.

German Diese Arbeit befasst sich mit der Lösung des Named Entity Disambigua-
tion Problems. Eine Knowledge base ist eine Informationsquelle, die Informationen
über Entitäte beinhaltet. Solche Entitäten sind zum Beispiel Firmen, Personen oder
Früchte. Gegeben einem Text mit Nennungen (Mentions) von diesen Entitäten (En-
tities) - wie Personen und Firmen - sollen mehrdeutige Nennungen mit der richtige
Entität aus einer Knowledge base verknüpft werden. Ein Beispiel dafür ist "Ap-
ple" als Frucht oder als Firma. In dieser Thesis wird Wikidata als Knowledge base
verwendet. Es werden zwei neue Modelle vorgeschlagen, die mit Hilfe von Ma-
chine learning, die Bedeutung eines Wortes aus dessen Kontext ableiten und diese
Information zum Erkennen der Entities verwenden. Die Modelle werden mit beste-
henden Modellen auf mehreren Evaluationsdatensätzen verglichen. Die Evaluation
hat gezeigt, dass die vorgeschlagenen Modelle nicht die naiven Ansätze schlagen
können. Allerdings zeigte sich Potential bei der Kombination der vorgeschlagenen
Modelle mit anderen Ansätzen.
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Chapter 1

Introduction

1.1 Organization of the thesis

• In this chapter, an overview of the topics, challenges, the proposed algorithm,
and its results is presented.

• Chapter 2 describes related work in comparison to this approach.

• Chapter 3 deals with the generation of the evaluation set from the Wikipedia
corpus and the entity context extraction from the Wikidata knowledge graph.

• Chapter 4 introduces the techniques used. It explains the proposed models in
detail. This chapter covers theoretical analysis.

• Chapter 5 discusses the results of the evaluation. This chapter covers empirical
analysis and potential points of failure. In the end, a conclusion with possible
improvements in future work is given.

1.2 Definitions

1.2.1 Named Entity Disambiguation

Named Entity Disambiguation (NED) is a task in natural language processing (NLP).
NLP is a field of computer science that is dealing with the processing of natural lan-
guages such as text and speech. A knowledge base is a source that stores information
about objects. Wikipedia and Wikidata are examples of knowledge bases. Such ob-
jects are called entities. A Named Entity is an entity in a knowledge base that can be
referenced by a mention in a text. As an example, the mention "Apple Inc." is refer-
encing to the "Apple Inc." company entity. A mention in this sense consists of one or
more words. Other entity examples are persons, companies or cities. Recognizing
mentions of such entities is called Named Entity Recognition (NER).
But some mentions are ambiguous. The word "Windows" can describe the operat-
ing system "Microsoft Windows" or the "Windows" in a house. The same applies to
"Apple" as in "Apple (company)" and "Apple (fruit)". Selecting the correct entity is
called Named Entity Disambiguation.

Consider the following example:

Windows is a widely used operating system, but Jobs and Linus wanted to build
their own. Either open source or with an apple on it, we like both.

The desired entity for each mention are the following:
"Windows"→ "Microsoft Windows"→ wikidata.org/wiki/Q1406
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"operating system"→ "operating system"→ wikidata.org/wiki/Q9135
"Jobs"→ "Steve Jobs"→ wikidata.org/wiki/Q19837
"Linus"→ "Linus Torvalds"→ wikidata.org/wiki/Q34253
"open source"→ "open source"→ wikidata.org/wiki/Q1130645
"apple"→ "apple (fruit)"→ wikidata.org/wiki/Q89

Wikipedia Wikipedia is an open-source encyclopedia with 5,801,234 content arti-
cles (February 2019)[1]. Articles are stored as text with additional knowledge repre-
sented as info-boxes and tables. The text of Wikipedia articles contains links to other
articles (c.f. fig. 1.1). Wikipedia itself does not feature any complex relationships
between articles. However, Wikipedia structures the articles in sections, and most
articles have a similar structure.

FIGURE 1.1: Example of links in a Wikipedia article. Links are colored
blue in the text.

Wikidata Wikidata is an open source knowledge graph that contains 53,646,279
items (entities) (January 2019) and relations between them[2]. "In Wikidata, items
are used to represent all the things in human knowledge, including topics, concepts,
and objects."[3]. Wikidata provides structured information about relations between
entities. Wikidata stores relations in the form of (subject, predicate, object) triples.
E.g. "(California) is (in) the (United States)" (c.f. fig. 1.2). Wikidata features most
of the articles in Wikipedia as an entity. Wikidata provides a structured graph for
knowledge retrieval and extends the abilities of Wikipedia as a source of knowledge.
Wikidata is especially useful for computer-based processing because computers are
better in dealing with structured data then unstructured (e.g., raw textual) data. A
Wikidata entity is denoted by an id starting with "Q" and a number (e.g. "Q99" for
California).

FIGURE 1.2: Example for Wikidata entity relations. Source:[2]
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1.3 Motivation

The motivation for creating this thesis is to evaluate a novel way of linking text to
knowledge base entities. This linking is useful to process ambiguous search queries
and to enrich an article with links to further details. Displaying information about
an entity requires the correct identification of this entity. As an example, when "Ap-
ple" as the company is recognized in a text, details about the company should be
displayed. However, it would be wrong to display nutrition details for an "Apple"
computer.

1.4 The objectives

The objective of this thesis is to create a model that links found Named Entities in a
text to Wikidata entities. An NER tagger provides the Named Entities. The model
therefore only performs the disambiguation (NED) part. As a source for the eval-
uation set, Wikipedia is used. In the text of Wikipedia articles, all links to other
Wikipedia articles are remembered and linked to their Wikidata entity. Each pro-
posed model is then given the plain text of the article together with all mentions
that reference to Wikidata entities. Each model is evaluated on its ability to link the
correct Wikidata entity. Each model is compared to two baselines and a reference
model. The evaluation set is described in Chapter 3.

1.5 Challenges

In general, computers lack knowledge about natural language and real-world ob-
jects. One of the main challenges is, therefore, to teach them such knowledge. The
correct entity needs to be identified given the natural-language context in which it
appears. Therefore NED involves both natural language understanding and knowl-
edge about entities and their relationship.
The three main challenges of NED are:

• Identify candidate entities for each mention.

• Choose the best candidate based on the context of the mention.

• Match partial mentions such as "Windows" to "Microsoft Windows" or "Obama"
to "Barack Obama".

• Identify specific versions of the same thing. E.g., "Berlin" and "Alt-Berlin" as
the current and historical entity.

1.6 Solutions

The thesis proposes two models for solving the NED task. NEDard and NEDardv2.
With the recent progress in the word embedding technology, multi-sense word em-
beddings (MSE) are used. A word embedding is a dense vector representation of a
word. The embedding encodes relevant information about the word. E.g., it incor-
porates semantics when the embedding model learned to predict a word’s context.
Word embeddings are introduced in detail in Chapter 4. Multi-sense word embed-
dings have different embeddings per word. One embedding for each sense/meaning
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of the word further called sense embeddings. This is used to disambiguate the mean-
ing of words and to link them to entities. More precisely, the NED task is solved
using the word sense disambiguation capabilities of the MSE models. For the imple-
mentation the Sensegram[33] MSE model is chosen.

The main idea behind both models is, for each word in the mention, to identify the
best sense and its embedding given the context words around the mention. A vector
index is built up front on Wikidata entities and a textual context for each entity.
During query time, the most similar entities are selected given an embedding rep-
resenting the sense of the mention given its context. This is done by comparing the
embedding for the mention with the learned embeddings for the entities. The sys-
tem exploits that related embeddings are more similar than not related ones using a
vector similarity metric. NEDard and NEDardv2 differ only in their way of dealing
with multi-word mentions and entities (e.g., "Microsoft Windows"). NEDard per-
forms disambiguation on a per word basis. NEDardv2 performs disambiguation on
a per mention/entity basis. In comparison to other approaches, the models derive
the embedding from pre-trained embeddings instead of learning them for the task.
The exact implementation of both NEDard models can be found in Chapter 4.
This approach has the following advantages:

• Information about the context and meanings of each word are learned in an
unsupervised manner, not requiring manual tagging and annotation.

• In the embedding vector space, the computer sense of "Windows" is close to
the entity "Microsoft Windows" solving the partial mentions issue.

• Even words that are not featured in entity labels can be linked in a meaning-
ful way. Given that "Apple One" (computer) has no entity in the knowledge
base, but a sense in the embedding model. Then "Apple One" can be linked to
"Apple (company)" due to their sense embedding similarity.

• New entities can be added to the index on the fly without retraining the rest.

• There is no need for costly training of an embedding model as pre-trained
vectors can be used.

• The models can be easily adapted to any other knowledge base by generating
a similar file with entities and their contexts.

1.7 Results

All models have been evaluated with different settings against different evaluation
sets. Each evaluation set features different characteristics. One evaluation set con-
tains more ambiguous mentions, and one contains only single-word mentions. In-
sights are gained on the pitfalls of using multi-sense embeddings for the NED task.
The two proposed models do not advance on the NED task on their own. They might
improve a specific part of the task and therefore are useful in combination with other
techniques. The best results obtained on an evaluation set is having 74,039 out of
100,320 disambiguations correct (accuracy of 0.738).
In comparison, the baseline that is always choosing the most likely entity for a men-
tion achieved 0.895 accuracy on the same evaluation set. Combining the score ob-
tained by the proposed models with the baseline increased the accuracy on more
ambiguous evaluation sets. The best combination accuracy on the test set of a linear
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combination is 0.650 in comparison to 0.616 of the baseline alone.
The detailed evaluation results are presented in Chapter 5, discussing possible points
of failure and improvements to the model in future work.
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Chapter 2

Related work

This chapter briefly describes other approaches to solve the NED problem.

In his Master Thesis Entity Disambiguation using Freebase and Wikipedia Raga-
van Natarajan builds a knowledge base out of Wikipedia and Freebase (a knowledge
graph similar to Wikidata)[31]. The knowledge base is built by linking a normal-
ized mention (so-called key phrase) to all Wikipedia articles it can refer to. This is
done by looking at all Wikipedia internal links from Wikipedia articles. As an exam-
ple, for the key phrase "casablanca" the entities "Casablanca (film)" and "Casablanca
(volcano)" are stored. A key phrase can also consist of multiple words like "air
transport". A given text is then split into n-grams (consecutive word pairs up to
n words). From the n-grams, potential key phrases (mentions) are selected. There-
fore the model has its own entity recognition step. With multiple metrics, a score
for relations between entities from the knowledge base and a score between the key
phrases in the given text is computed. A graph is used to propagate these scores as
evidence and link each key phrase to the entity with the highest score. This is done
by adjusting the relationship scores with propagated values from adjacent nodes. In
his thesis, the entities used were articles from Wikipedia.
This differs from this thesis as it computes similarity scores over the whole docu-
ment, and not for each mention and context on its own. The propagation done in
this thesis is by the other mentions being in the context of or sharing the context with
the current mention. Also, the similarity in vector space allows implicit propagation
between words.
The paper Joint Learning of the Embedding of Words and Entities by Yamada
et. al (2016) proposes a model that adapts and extends the Skip-gram model of
word2vec[30] in order to jointly learn embeddings for words and entities[24]. It
maps mentions and entities to the same vector space. It allows a direct comparison
between entities and words. The NED step consists of creating an embedding from
the context of the mention and training a model to match it to entity embeddings.
In comparison to the two models proposed in this thesis, the model of the paper
trains the entity embeddings actively instead of deriving them from an existing
model. Also, the authors published the Wikipedia2vec tool, which allows creating
the embeddings with a python script[36]. However, Wikipedia2vec does not pro-
vide a way of performing NED.
DeepType is a Type System developed by Raiman and Raiman in 2018 that can be
used to achieve state of the art NED performance[29]. Their model learns around
100 categories from Wikipedia which can separate all entities the best. The best cat-
egories should be easily inferred from context and still discriminate entities well.
These categories form the Type System. To learn the Type System, all possible enti-
ties for mentions are extracted from Wikipedia internal links in Wikipedia articles.
Their model extracts all Wikipedia links with their target article as an entity and
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link text as its mention. Afterward, for each entity, Wikidata is used to get the set
of categories to which it belongs. E.g., the "jaguar" car entity belongs to the cate-
gories "Jaguar vehicles", "Jaguar Cars", "Car brands", "British brand". For each cate-
gory, a binary classifier is trained to predict if the mention has this category or not.
The performance of each classifier becomes the "learn-ability score" for that type.
More precisely the Area under the curve (AUC) metric is used as a performance
score. Around 100 categories are selected which separate all entities extracted from
Wikipedia the best. This selection is based on the learn-ability score and count statis-
tics. An LSTM neuronal network is then trained on each mention and the categories
of its target entity. It learns to predict the categories for a mention given its context
as "is in category" probability vector. At retrieval time the LSTM is used to infer the
type vector of a mention and its context. The correct entity for the mention is then
selected by matching the categories to the type vector. The NED step is not available
publicly.
DBPedia Spotlight is a tool developed by Mendes et. al in 2011 that allows recog-
nizing or disambiguating entities in text and to link them to the DBPedia knowledge
graph[32]. DBPedia is a knowledge graph featuring Wikipedia articles and links to
Wikidata entities. They build a Vector Space Model that is based on an entity context
matrix. In the matrix each row representing an entity and each column representing
a word. Therefore, each entity is represented by a vector made of word counts. For
each paragraph in Wikipedia mentioning the entity all words in this paragraph are
counted. These word counts are summed up over all paragraphs resulting in the
vector for the entity representing the counts for each word that ever occurred in the
same paragraph. The resulting matrix, therefore, features contextual information
about each entity.
During disambiguation, candidate entities are selected, and a representation for the
mention is computed by counting the words in its context. Resulting in a word
count vector comparable to the entity context matrix. The entity context matrix and
the word count vector are then normalized using tficf. tf is the count of the context
word for each entity. icf is the inverse frequency of the word over all candidates
for the mention calculated by log( |Candidates|

|Candidates_with_word| ). The goal is to normalize the
importance of words for disambiguation. All candidates are then ranked by cosine
similarity of their normalized context vectors with the mentions context vector. This
results in the entity, which context matches the mentioned context the most.
In comparison to the model in this thesis, DBPedia Spotlight uses a word occurrence
matrix and no word embeddings. DBPedia Spotlight is used as a reference for this
paper as it provides a reproducible NED step.
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Chapter 3

Data sets

3.1 The evaluation set

In order to evaluate the performance of each model, an evaluation set is crafted out
of the Wikipedia corpus. The core idea is to take a large set of mentions (link texts)
linking to the correct entity (articles) as ground truth.
The generation involves the following steps:

• Take a Wikipedia data dump with all articles and get the MediaWiki markup
for each article[4].

• Ignore disambiguation pages or articles that only redirect to other articles.
They do not provide the context we would expect from regular articles.

• Remove all information except links to other articles from the markup. For
example tables, infoboxes and charts or external links.

• Replace all inter-article links with their plain text and remember their position,
text and target article.

• Resolve the Wikidata id of the target articles to generate the ground truth. Dis-
card links without Wikidata id. However, most Wikipedia articles can be re-
solved to a Wikidata entity.

• (Optional) NER process the plain text using the Spacy[5] NLP toolkit. Then
match the identified named entities to the found links. The goal is to remove
noise from mentions (e.g., "click here") and other mentions that are no proper
names. It also gives a score for the real world "plain text" scenario without tak-
ing different NER tagger into account. The resulting mentions are a subset of
the original ones. In this thesis, another set without this filtering is evaluated,
too.

The result is a file with the plain text of the article and a file with the extracted men-
tions with their Wikidata ids. In the file start is inclusive, and the end is exclusive,
both measured in UTF-8 char positions. A tab separates each column:

start_position end_position Wikipedia_link mention_text Wikidata_id

During an evaluation, only the position of the mention and the text is passed to the
model.

3.1.1 The Wikipedia data dump

Wikipedia can be downloaded as a data dump directly from the Wikimedia web-
site[6].
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3.1.2 The inter-article links

The Wikipedia data dump and the markup contains much more information than
needed for the evaluation set such as tables, images, and templates. A template
is a code that generates elements when the markup is compiled to HTML. These
additional elements add noise to the text as they do not contain natural sentences.
The relevant information are the inter-article links denoted by either:

[[wikipedia_article]]

resulting in "Wikipedia_article" as link text,
or denoted by:

[[wikipedia_article|text]]

resulting in "text" as link text. As an example:

[[Freiburg_im_Breisgau|Freiburg]]

There exist many parsers to extract information out of the data dump file[7]. For
this thesis, the Gensim wikisegments[8] script is used to load the Wikipedia data
dump. The mwparserfromhell[9] library is modified to change everything to plain
text keeping all inter-article links as follows:

[[wikipedia_article|link_text]]

The links are then extracted using a regular expression. Any redirect and disam-
biguation (identified by name_(disambiguation)) pages are ignored in the process.

For future work, we recommend using the wikiextractor[10] tool, because it is faster
and has less overhead. With the program call

WikiExtractor.py --filter_disambig_pages --no-templates -l <input>

we can extract articles with plain text and links as <a href="/xy">Text</a> and
parse them with a simple regex.

3.1.3 Resolving Wikidata entity ids

In order to resolve the Wikidata ids a file from Niklas Baumert’s bachelor thesis
(2018) mapping Wikipedia article to Wikidata id is used[26]. The mapping has been
extracted using the QLever[11] engine. Each line links a Wikipedia article to its
corresponding Wikidata entity id. The mapping also links Wikidata discussion En-
tities for a few Wikipedia articles to these articles, resulting in a Wikipedia article
pointing to multiple Wikidata entities. The Wikidata entity with the smallest id is
preferred for each Wikipedia article as a heuristic for the real entity. As an exam-
ple, "Q14412542" is the entity for the "Wikimedia template Latest stable software
release/Microsoft Windows" linking to the article "Microsoft_Windows". The cor-
rect entity for "Microsoft_Windows" is "Q1406". As observed this approach works
for the evaluation set.
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3.1.4 Recognizing named entities

According to the given objective mentions are identified by performing POS tag-
ging of each sentence with Spacy[5] and selecting maximal NNP (proper noun) se-
quences.
Part of speech tagging (POS) is an algorithm that identifies the grammatical struc-
ture of a sentence.

"The Apache Project also supports Windows." has the tags
"The/DT Apache/NNP Project/NNP also/RBS supports/VBZ Windows/NNP.".

With the POS tags DT (determiner), RBS (adverb, superlative) and VBZ (third per-
son verb).
In this case the maximal NNP sequences "Apache Project" and "Windows" are iden-
tified as named entities.

3.2 The entity context

In order to learn an embedding representation for each Wikidata entity, a context file
with

Wikidata_id -> label -> raw textual context

is extracted from Wikidata.

3.2.1 Extracting the context

The context is extracted using the QLever[11] SPARQL engine. SPARQL is a query
language designed for relationship-based knowledge bases like Wikidata[12]. The
result is then downloaded as a TSV file and processed to match the desired file for-
mat. This includes filtering out "P" (predicate) entity ids, "Templates:*", "Category:*"
and "Portal:*" labeled entities. Predicate entities are the entity representations of the
relations between entities.

Description only

A simple approach is to extract only the description of each entity as context.

PREFIX wikibase: <http://wikiba.se/ontology-beta#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
SELECT DISTINCT ?thing ?thing_label ?description WHERE {

?thing rdfs:label ?thing_label .
?thing schema:description ?description .
FILTER langMatches(lang(?description), "en") .
FILTER langMatches(lang(?thing_label), "en")}

ORDER BY ?thing

Q1000006 Florian Eichinger German film producer and screenwriter
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Q1000007 IFA S4000 truck
Q1000008 Neuvireuil commune in Pas-de-Calais, France
Q1000009 Neuville-Saint-Vaast commune in Pas-de-Calais, France
Q100000 Cadier en Keer town in Limburg, the Netherlands
Q1000010 Königsmitteltor city gate of Aachen, Germany
Q1000011 Neuville-sous-Montreuil commune in Pas-de-Calais, France

Subclass of

A more involved approach includes the descriptions of all "subclass_of" related par-
ents of the entity. Or only their labels, whatever one desires. Adding subclass infor-
mation extends the context with broader information used during entity learning.

PREFIX wikibase: <http://wikiba.se/ontology-beta#>
PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX schema: <http://schema.org/>
SELECT DISTINCT ?thing ?thing_label ?description GROUP_CONCAT(?o_desc)
WHERE {

?thing rdfs:label ?thing_label .
?thing wdt:P31 ?other .
?thing schema:description ?description .
?other rdfs:label ?other_label .
?other schema:description ?o_desc .
FILTER langMatches(lang(?other_label), "en") .
FILTER langMatches(lang(?description), "en") .
FILTER langMatches(lang(?o_desc), "en") .
FILTER langMatches(lang(?thing_label), "en")}

GROUP BY ?thing ?thing_label ?description

Q1000006 Florian Eichinger
German film producer and screenwriter
common name of Homo sapiens, unique extant species of the genus Homo
Q1000007 IFA S4000
truck type of large automobile
Q1000008 Neuvireuil
commune in Pas-de-Calais, France
France territorial subdivision for municipalities
Q1000009 Neuville-Saint-Vaast
commune in Pas-de-Calais, France
France territorial subdivision for municipalities

3.3 The candidate data set

Most models evaluated in this thesis rely on a set of candidates for a mention. For
this purpose, a knowledge database crafted from Wikipedia by Niklas Baumert in
2018 is used [26]. It contains, for each mention, all the Wikipedia articles linked to
as well as their relevance score. The relevance score is the probability of the article
being the target article of the mention. This is calculated by counting the number of
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times each entity is the target of this mention over all of Wikipedia. The knowledge
database is available as an SQLite database or a text file with the following schema:

mention (lnrm) wiki link relevance Wikidata
lrnm__freiburg Freiburg_im_Breisgau 0.99 Q2833
lrnm__freiburg Canton_of_Fribourg 0.01 Q12640

... ... ... ...

The lnrm is a normal form for text, stripping it of diacritics, lower casing, and remov-
ing all non-alphanumeric characters. The candidates for mention m are all Wikipedia
articles a with m ∈ linktexts(a). Wikipedia articles are then resolved to their Wiki-
data entities as mentioned above.
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Chapter 4

Theoretical analysis

4.1 Prerequisites

4.1.1 Word Embeddings

Teaching a computer about the meaning and semantics of words is a tough task.
Natural language is ambiguous on a word and a sentence level. "Apple" can de-
scribe the fruit or the company. "I saw the man holding the apple" is ambiguous as
it is unclear who is holding the apple.
Encoding words can be done by using one-hot vector representations with a dimen-
sionality of the length of the vocabulary. While this gives a unique representation
for each word, it does not include information about semantics. With one hot vector
representations, words cannot be compared to each other. Also, the vector size in-
troduces a considerable overhead to the representation.

The most recent way of overcoming this issue is to train dense, high dimensional
vectors (so-called embeddings) for each word on text corpora. Embeddings incor-
porate information about each word, such as their semantic relationship, which can
be utilized in different ways. Embeddings can be learned by a neural network op-
timizing an objective such as the similarity between embeddings of related words.
This is called distributed semantics model as the semantics of a word is defined by its
relationship to other embeddings. A common dimensionality for those embeddings
is between 100 and 500 dimensions, most often 300. More dimensions allow more
information to be encoded while having an impact on training time. More dimen-
sions have an impact on downstream dimension size sensitive models and metrics.
More dimensions can result in more data needed for training as more information is
needed to learn more complex relationships.

In 2013 the word embedding approach got a huge boost by the paper of Mikolov
et al.[30] introducing Word2Vec as a fast and easy way of computing word embed-
dings.
In each step, a word from the text is selected as the center word, iterating through all
the words in the corpus. The model applies a neural network to the center word and
all the words around it, predicting their co-occurrence; e.g., "what words are used
alongside ’Apple’" The model is based on the assumption, that one can identify a
word "by the company it keeps" (Firth, J. R. 1957). Therefore words with similar
contexts result in more similar vectors.
In word2vec a neuronal network with one hidden layer is used. In comparison to
other word embeddings models, the network only has linear activation functions ex-
cept for the output layer, and thus, improving training speed. The network is trained
on a text corpus to predict probabilities of word occurrences near other words. The
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FIGURE 4.1: Network structure of both word2vec models. w(t) being
the word at position t. Source:[30]

word2vec model is an unsupervised technique requiring only (large) text corpora
as input and no labeled data. An input to word2vec is a one hot vector represent-
ing a specific word and the output is a probability vector for other words near it.
Word2Vec optimizes the weights in the input and output layer using backpropaga-
tion. Those weights correspond to specific words, therefore becoming optimized
word embeddings after training. The size of the hidden layer, therefore, determines
the dimensionality of the embeddings.

Word2vec either works with the CBOW (Continuous bag of words) or the Skip-gram
approach. The network structure for both can be found in 4.1.
CBOW asks the model to predict the central word given a context. In the input layer,
an average of the embeddings for context words is computed. This average is then
multiplied by dot product with all output layer weights which correspond to words
as center words. Then a softmax classifier predicts the probability of these center
words. The model gets a penalty if the real center word is not likely enough.
Skip-gram asks the model to predict the context given the central word. For every
word, combinations with its context words are sampled. The input embedding for
the center word is then multiplied by dot product with the embeddings for other
words in the output layer which correspond to words as context words. Then a soft-
max layer is used to compute probabilities of these context words. The model gets a
penalty for predicting words, that are not in the context.
Skip-gram works well even with small amounts of data and can represent rare words
well [37].
On the other hand, CBOW is faster by several magnitudes and with slightly better
accuracy for frequent words [13].
CBOW also is independent of the word order. Skip-gram can discount words that
are further away from the center word by sampling them less frequently during
training. To speed up the training, multiple techniques are used. For example, sub-
sampling frequent words together with techniques to speed up the softmax layer.
After training the input-layer weights are extracted and saved as embeddings. In
theory, the output weights could also be used as embeddings, but in practice, the
input weights are referred to as word embeddings. The rest of the network is dis-
carded unless further training is desired [14] [15] [16].
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FIGURE 4.2: Visualization of word embeddings projected to 2D using
t-sne. Clusters indicate semantic relations. Source: [18]

Word embeddings have a lot of interesting properties. For this thesis, we focus on
the ability to compare words. As shown in figure 4.2, words that are related tend
to be close together. Such visualizations are achieved by dimension reduction us-
ing t-sne or PCA into a three or two-dimensional space[17]. Specially t-sne is use-
ful to visualize the relationship between embeddings in lower dimensional space.
Embeddings close together in the visualization are more likely to have something in
common. However, the interpretation of such visualizations should always be taken
with a grain of salt as intuition can fail in high dimensional space [28]. Just because
they look close together does not mean, that they have the desired property in the
original space.
The similarity between embeddings can be computed with vector space metrics such
as cosine similarity. Cosine similarity is the most used metric to achieve the best
word similarity results. This is because word2vec optimizes dot products between
embeddings of related words to be large and we want to get the direction of word
relationship evidence and not its magnitude[19]. Table 4.1 illustrates a possible rela-
tionship between words.

Cosine similarity

Cosine similarity is defined as the measure of the angle between two n-dimensional
vectors.

sim(x, y) =
x · y

||x|| · ||y||
It is robust to the different vectors lengths and high dimensionality. The values are
in [−1, 1] where 1 is the same vector, 0 independent and −1 the opposite direction.
If the values are restricted to positive only (e.g., word counts) cosine similarity is
in [0, 1]. In information retrieval it is frequently used to determine the similarity
between documents without considering their length. In addition to the similarity
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WORD a WORD b sim(a, b) ∈ [−1, 1]
Coffee Tea 0.68
Toyota Freiburg im Breisgau 0.12

TABLE 4.1: Possible cosine similarity between words in the embed-
ding space

FIGURE 4.3: Visualization of the semantic reasoning with word em-
beddings. Each axis represents a dimension of a two-dimensional

embedding. Adapted from: [21]

the cosine distance is defined as 1− sim(x, y).

Additionally, word embeddings support arithmetic operations that mimic the se-
mantics of the represented words. The most famous example is shown in figure 4.3.
The vector for the queen can be derived from the vector for the king as language
would suggest:

vec(king)− vec(man) + vec(woman) ≈ vec(queen)

According to Mikolov given the word embeddings for "River" and "Russian" the
sum of both embeddings will be close to "Volga river" [20].
Averaging over embeddings is known to give a representation for multiple words,
sentences or even documents. This can be used to combine words in case one wants
to compare documents or paragraphs.

However, it needs to be said that word embeddings bear a risk of generating fuzzy
and nontransparent results. The similarity between embeddings can be unexpected.
As an example, "Bad" and "Good" can be really close together by cosine similarity
depending on the training. This would happen for example if the model learned
that they are both used to describe the quality of things.
To be more precise if the text is always "This product is good" and "This product is
bad" the context learned for both words is the same. This results in the two embed-
dings having a high similarity.
Therefore word embeddings need to be evaluated on a specific task, and word em-
beddings are or are not useful for all objectives. It is often unclear which information
is encoded in the embeddings. Thus word embeddings increase the fuzziness of a
model.
In a practical context, word embeddings are likely to be used as weight initialization
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for other text processing models.

4.1.2 Multi-Sense Word Embeddings

While word embeddings are known to provide a measure for similarity between
words, they "squeeze" all meanings of a word onto the same embedding. There-
fore our "Apple" embedding will feature both meanings of "Apple Inc." and "Apple
(fruit)" as it learned the same word "Apple" in two different contexts.
To tackle this issue multiple models of multi-sense embeddings (MSE) were devel-
oped.
Similar to clustering algorithms some of them need a specific number of senses per
word upfront, others can identify the necessary number of senses on a per word ba-
sis.
Sense2Vec [35] is capable of learning one representation for every part-of-speech
version of a word such as Apple/NN (Noun) or Apple/NNP (Proper noun). But
Sense2Vec does not learn multiple representations for the same POS-Tag and is there-
fore not suitable for NED as entity mentions are mostly proper nouns.
Tian et al. [34] proposed a technique which is capable of learning multiple proto-
types (embeddings) per word but needs a fixed amount per word up front. This
amount is not determined easily.
In 2015, Bartunov et al. [25] developed the AdaGram model which uses Bayesian
Nonparametrics and the Dirichlet process to modify the original word2vec skip-
gram model with an additional latent variable. The model is capable of learning a
different amount of embeddings per word and of increasing the amount with more
text during training, if necessary. The semantic resolution is set by a hyperparameter
α. Results of this model can be found in 4.2. Those results can be seen as an example
of how multi-sense word embeddings represent the senses.
Pelvina et al. [33] proposed the Sensegram model, which like AdaGram is capable
of learning a per word amount of embeddings. It uses an ego network approach to
derive sense embeddings out of an existing word embedding model. An ego net-
work consists of a word (ego) and related words (alters). The alters are connected by
edges if they are similar themselves in embedding space. An example can be seen
in 4.4. This approach allows the model to be trained on existing word embeddings.
The semantic resolution is again modified by a hyper-parameter n.
As Sensegram makes up a significant part of this thesis model the following section
is a summary of the original paper:

1. Take existing word embeddings or train new ones. Based on tests a context
window of 3, minimum word frequency of 5 and CBOW over Skip-gram is
used for better performance on sense disambiguation.

2. For each word, the most similar 200 words are selected as related words using
the embedding model. 200 is motivated by prior studies as almost all words
do not have more related words.

3. For each word (as ego) build a graph out of all related words as nodes (alters).
Connect each of the nodes to other nodes if they are in their n most similar
words.

4. On each graph do graph clustering with the Chinese Whispers algorithm [27]
and compute a embedding for each cluster by the similarity-weighted average.
Consider a function γ : V → R mapping an embedding v ∈ V to its similarity
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TABLE 4.2: Nearest neighbors of meaning prototypes in embedding
space learned by the AdaGram model with α = 0.1. In the second

column the relevance of each sense is given. Source: [25]

WORD p(z) NEAREST NEIGHBOURS

python 0.33 monty, spamalot, cantsin
0.42 perl, php, java, c++
0.25 molurus, pythons

apple 0.34 almond, cherry, plum
0.66 macintosh, iifx, iigs

date 0.10 unknown, birth, birthdate
0.28 dating, dates, dated
0.31 to-date, stateside
0.31 deadline, expiry, dates

fox 0.38 cbs, abc, nbc, espn
0.14 raccoon, wolf, deer, foxes
0.33 abc, tv, wonderfalls
0.14 gardner, wright, taylor

rock 0.23 band, post-hardcore
0.10 little, big, arkansas
0.29 pop, funk, r&b, metal, jazz
0.14 limestone, bedrock
0.23 ’n’, roll, ‘n’, ’n

to the initial (ego) word embedding. The similarity-weighted average then
becomes

si =
∑a

k=1 γ(veck)veck

∑a
k=1 γ(veck)

for each cluster Ci = {vec1, ..., veca}. Those cluster average embeddings then
become the sense embeddings for the initial word.

Chinese Whispers does not need a number of clusters up front. The amount is de-
termined by links between nodes and therefore by the parameter n. To remove noise
clusters with a size |ci| < min_cluster_size are discarded. The paper’s authors tested
the unweighted average as well and found it to be inferior at the disambiguation
task.

4.1.3 Word sense disambiguation

The desired property of disambiguation of meanings of words given a context is
defined by the word sense disambiguation (WSD) task. WSD is the task to disam-
biguate between meaning/senses of words given a context. In contrast to NED, it
does not link them to an entity in a knowledge base, but identifies the same sense in
different texts.
The models proposed in this thesis are using the word sense disambiguation per-
formance of the Sensegram to disambiguate and match mentions to entities in a
knowledge base.
According to the Sensegram authors, Sensegram performs comparably to AdaGram
on the WSD task [33].
Both AdaGram and Sensegram offer open source implementation and pre-trained
models to solve the WSD task.
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FIGURE 4.4: Visualization of the ego-network of “table” with furni-
ture and data sense clusters. Note that the target “table” is excluded

from clustering. Source: [33]

Because the Sensegram implementation is written in Python and AdaGram in not
maintained Julia code (although an unofficial Python version exists), Sensegram is
used.
Sensegram does not care about the order of the words in the context window, there-
fore, sees them like a bag of words.
The proposed "NEDard" models are capable of working with every sense embed-
ding model that offers a disambiguation method. This method needs to provide a
sense embedding given a word and its context.
Again, as Sensegram is the basis for the proposed models, a description of the sense
disambiguation step is given.
1. For a word w all known senses S = {s0, ..., sn} are retrieved.
2. For the context words C = {c0, ..., ck} of w the average of their word embeddings(vec)
c̄ = k−1 ∑k

i=0 vec(ci) is calculated.
3. The most similar sense with cosine similarity is selected as result:

s∗ = arg max
i

sim(si, c̄) = arg max
i

c̄ · si

||c̄|| · ||si||

The authors of Sensegram[33] also investigated a "probability-based" approach us-
ing the "context embeddings" (the output layer weights of the network). As this
approach requires the context embeddings to be known and does not improve over
the similarity-based approach, they stayed with the similarity based one.
In both cases, the amount of context words is reduced to the max_context_words
most discriminatory words. This means selecting the context words with the high-
est evidence towards one and against another sense. This is done because typically
only a few context words are relevant for the disambiguation. For each word cj in the
context and all word senses si calculate maxi f (si, cj)−mini f (si, cj) as score. Where
f is the disambiguation function sim(s, c). Choose the top max_context_words scor-
ing words. For this thesis, the default "similarity" based approach is used.
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4.2 The NEDard models

4.2.1 Overview

In a nutshell, the NEDard NED step consists of the following steps:

1. Load the multi-sense word embedding (MSE) model. In this case, this is the
pre-trained Sensegram model.

2. Preprocess the text and mentions to retrieve word tokens.

3. For every mention, use the MSE model to get the matching sense embedding
given the surrounding context.

4. Use a vector index learned from Wikidata to get the best matching entity. Can-
didates are either all entities or a pre-selected subset.

Learning the NEDard index is done by:

1. Load the MSE model.

2. Fetch a context for each entity in Wikidata.

3. For every entity label, ask the MSE model for the sense embedding given the
context.

4. Store the vector together with the entity id in a vector index for fast lookup.

4.2.2 Preprocessing

To illustrate the preprocessing consider the following example:

Windows is a widely used operating system, but Jobs and Linus wanted to build
their own. Either open source or with an apple on it, we like both.

As example given to the model is the text and following mentions found by an arbi-
trary NER tool:

Mention text Start (inclusive) Stop (exclusive)
Windows 0 7

operating system 25 41
Jobs 47 51

Linus 56 61
open source 96 107

apple 119 124

Given the text t and mentions M the model splits t into sub strings S between its
mentions.

t = s0M1s1M2s2...Mnsn (Mk ∈ M, sk ∈ S) (4.1)

Each sub string sk ∈ S and mention Mk ∈ M is then tokenized by

• Remove accents

• Remove numbers

• Replace punctuation with white spaces
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• Keep a word w only if 2 ≤ len(w) ≤ 20

• Keep only words known to the MSE model as unknown words are ignored by
it. For mention tokens consider the other cases too if ignore_case is set to true.

Resulting in a list of tokens and an index for each mention mapping it to its tokens.
The following sentence is an example including punctuation, a fictional unknown
word ("Malagati") and a single character word ("a").

Microsoft’s Windows10 is a widely-used operating system in Malagati.

It results in the following tokenized list and the mentions:

[’Microsoft’, ’Windows’, ’is’, ’widely’, ’used’, ’operating’, ’system’, ’in’]

Mention tokens Start (inclusive) Stop (exclusive)
’Microsoft’ + ’Windows’ 0 2

’operating’ + ’system’ 5 7

Now the whole list is used to select the context for each mention token in it based on
its position. Stop words are not removed in this step.
This way the text only needs to be preprocessed once for all mentions.

Note on casing

The Sensegram pre-trained model used is trained on a not lowercased version of
the word embeddings. Therefore different cases have both different word and sense
embeddings.
The Sensegram model supports "ignore case", which means, that for the query "Flo-
rian" also the senses for "florian" are considered. The casing of the context words,
however, remains unaltered. Therefore, mention words in the context of other men-
tions are case sensitive. As mention, they are processed according to ignore_case
parameter.
This means that mention tokens and context tokens are stored separately. The origi-
nal casing of the mention tokens is still present in the context token list. Otherwise,
other mentions would lose the correct case in their context.
This thesis evaluates ignore-case and keep-case models.

4.2.3 Multi word mentions

Most entities contain more than one word in their label. To get a vector representa-
tion for those mentions, there are multiple ways one can think of. This is necessary
in case the embedding model does not contain representations for multi-word en-
tries.
First, identify the sense for each word in the mention, then do one of the following:

• Calculate the average of the sense embeddings for each word. This is often
done when working with word embeddings to get composite representation.
It might increase the fuzziness of the model as the outcome quality is unclear.

• Calculate the weighted average of the sense embeddings for each word. E.g.,
use tf-idf overall mentions as weight. Weighting the embedding helps to keep
the semantic information as the resulting vector is closer to the more relevant
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sense embedding. Botanical names, for example, have a common part (family
name), but a rare specific part.

• Create its own entry in the vector index for each word in the mention. This
might help if only one word has the correct sense, that we are looking for.
Adding a wrong sense can destroy the entity vector. During retrieval, the dif-
ferent results need to be ranked to select the final suggestion. For example
by highest similarity. Using this technique increases the risk of learning too
similar embeddings for different entities.

In this thesis, the vector per word approach "NEDard" and the tf-idf weighted av-
erage approach "NEDardv2" are evaluated. The tf-idf score is calculated over the
entity names during training. See 4.2.4. Other scores are up for future work.

tf-idf is a common weight/normalization in information retrieval. It is used to un-
derstand the importance of a word in a document compared to all other documents.
E.g., normalize word counts across documents. Term frequency (tf) is the number
of occurrences of the word in the document. Inverse document frequency (idf) is
defined as

log(
|documents|

|documents_containing_word| )

The formula is t f ∗ id f for each word, document combination. As an example, if a
large text with 2000 words contains a word ten times consider another text with 100
words also containing the word ten times. The 2000 words text is most likely not
"about" that word as much as the 100-word text.

For multi-word mentions, every word in the mention is disambiguated on its own.
To include the other words O of the mention in the context C, it is extended to

Cnew = o1 + ... + on + C (ok ∈ O) (4.2)

creating an own context for every word in the mention.

4.2.4 Training

Input

As input for training the previously introduced context from Wikidata is taken.

Q1000006 Florian Eichinger German film producer and screenwriter
Q1000007 IFA S4000 truck
Q1000008 Neuvireuil commune in Pas-de-Calais, France
Q1000009 Neuville-Saint-Vaas commune in Pas-de-Calais, France
...

From each line, the id, label, and context are extracted. As an example, the first entry
is selected:
Florian Eichinger German film producer and screenwriter

Given this context, the model should be able to extract his name, his nationality
and his profession.
In the best case, the MSE model is capable of disambiguating "Florian Eichinger"
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into a German, who works in the film industry as a producer, and to return a vector
representation of this "German movie maker" sense of "Florian Eichinger".
During retrieval, "Florian Eichinger" given a context related to movies and Ger-
many should resolve to the learned entity.
Descriptions of the entity are a good choice for the context as they are a short, but
informative description of the entity. Good descriptions contain a word for every as-
pect of the entity. Adding labels from related nodes in Wikidata extends the context.

Word sense disambiguation

During training, the model extracts the mentions words and preprocesses the con-
text as mentioned above.

token context

Florian
[’Eichinger’, ’German’, ’film’, ’producer’,

’and’, ’screenwriter’]

Eichinger
[’Florian’, ’German’, ’film’, ’producer’,

’and’, ’screenwriter’]

For each token a window of size context_window is extracted from the context start-
ing from the left.
Stop words are removed from this window and the result is passed into the MSE
model for disambiguation. Resulting in word#sense_id.

token context window (size 5) without stop words result of MSE
Florian [’Eichinger’, ’German’, ’film’, ’producer’] Florian#0

Eichinger [’Florian’, ’German’, ’film’, ’producer’] Eichinger#3

Internally the Sensegram [33] model chooses up to max_context_words with the
highest predictive power.
The step results in a vector for every mention token that represents its sense.
The default value is to have overall 10 words (5 on each side) of the mention and to
choose the 3 most predictive words out of them. Mention token for which no sense
embedding could be retrieved are discarded. This can happen if the mention token
is not featured in the Sensegram model.
The result of this sense disambiguation is:
[vector("Florian#0"), vector("Eichinger#3")]

Learning weights

The NEDardv2 model needs information about the importance of each word in a
mention. This is done by learning the tf-idf weights for words overall entity la-
bels in the context file. Entity labels are treated as documents and their tokens as
words. Given only the entities "Washington D.C." and "George Washington", the
word "Washington" appears in both. Therefore its idf is lower resulting in more
weight given to the "George" part. This is done in the hope of "George" being more
descriptive for an entity. NEDardv2 learns a weighting function φ(w, W) that returns
the tf-idf weight of a word w in a list of mention words W = {w0, ..., wn}.

Index storing

As the retrieval depends on the fast comparison of a vector to the vectors in the in-
dex, a suitable vector index is chosen. Gensim’s "KeyedVectors" [22] representation
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allows querying of "most similar" entities by a vector and by entity name. Query-
ing by an entity can be used to get similar entities to a given one. It allows adding
new vectors as desired and saves the index to disc with the ability to load it as a fast
memory map. It is the same index used by Sensegram and the Gensim word2vec
implementation. To speed up querying in future work a nearest-neighbors index
can be set on top of KeyedVectors.

The storing of the entity representation depends on the model used:

NEDard [vector("Florian#0"), vector("Eichinger#3")]

results in two embeddings for the entity Q1000006 namely Q1000006#0 and Q1000006#1.
One links the entity to this sense of "Florian" and the other to this sense of "Eichinger".

NEDardv2 [vector("Florian#0"), vector("Eichinger#3")]

results in the embedding Q1000006. It is the tf-idf weighted average of the sense
embeddings "Florian#0" and "Eichinger#3". Using the φ weighting function defined
above each entity embedding becomes

e = ∑n
i=0 φ(wi, W)si

∑n
i=0 φ(wi, W)

given the entity tokens W = {w0, ..., wn} and their sense embeddings S = {s0, ..., sn}.
In addition mention token and senses for which no tf-idf weight could be resolved
are ignored.
After adding all entities to the index this way the index is saved to disc for later use
denoted by CONTEXT_FILE.nn.

4.2.5 Querying

Input

Input to the retrieval method is the previously introduced text and its mention map-
ping.

Windows is a widely used operating system, but Jobs and Linus wanted to build
their own. Either open source or with an apple on it, we like both.

The text is now converted to a list of tokens and an index that denotes the position
of each mention in it as mentioned above.

Word sense disambiguation

For each mention, a context of n tokens to the left and n tokens to the right are se-
lected, potentially including other mentions. Similar to the training step, stop words
are filtered as this matches the way the Sensegram model works.
Analog to the training step the MSE model is queried for the best matching senses
of the given mentions.
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Mention context window (n = 5) without stop words result of MSE
Windows [’widely’, ’used’, ’operating’] Windows#1

operating +
system

[’Windows’, ’widely’, ’used’,
’Jobs’, ’Linus’, ’wanted’]

operating#1 +
system#2

As a result we now have a sense vector for each word in the mention. Mention token
for which no sense embedding could be retrieved are ignored.

Linking the entity

The missing step is to link the mention given its sense embedding(s) to an entity.
Again NEDard and NEDardv2 differ in the way they handle multiple tokens per
mention.
NEDard handles each mention token as own linking try and chooses the entity with
the highest similarity score.
NEDardv2 computes the weighted average of the mention token analog to the train-
ing step.

e = ∑m
i=0 φ(wi, W)si

∑m
i=0 φ(wi, W)

given the mention token W = {w0, ..., wm} and their sense embeddings S = {s0, ..., sm}.

There are two ways of doing the entity linking evaluated in this thesis.
1. Search the full index for the best matching entity embedding and return its id.
2. Restrict the search space to entities, which are candidates for the given mention.
Candidates are extracted using the knowledge base introduced in 3.3.

While
1. allows finding related entities in case the real entity is not known
2. offers better precision and speed due to restricted search space with a high prob-
ability of containing the desired entity.

1.1 All known entities | NEDard

• For each word in the mention take its sense embedding and query the closest
entity in the index given by cosine distance.

• Return the entity that has been the closest overall words

1.2 All known entities | NEDardv2

• Return the entity that has been the closest to the averaged sense embedding e

2.1 Candidate entities only | NEDard

• Get all candidate entities and all vector representations of them inside the in-
dex. A candidate entity in NEDard has multiple representations "Q123#0", ...,
"Q123#n" inside the index. One for each word in its label during training.

• For each word in the mention take its sense embedding and get distances to
all candidates. Return the candidate with the lowest cosine distance (highest
similarity) for each word.

• Return the candidate that has been the closest overall words in the mention.
This is the candidate that contains a word with the sense embedding closest to
a sense embedding of a word in mention.
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2.2 Candidate entities only | NEDardv2

• Get all candidate entities and all embedding representations of them inside the
index. A candidate entity in NEDardv2 has a single embedding "Q123" in the
index representing the averaged embedding learned during training.

• Take the average sense embedding of the mention e and compare it to all candi-
date embeddings. Return the candidate with the lowest cosine distance (high-
est similarity).

Considering our example text and the "Windows" mention the following is achieved:

NEDard:
Inside the vector index is a "computer" sense representation learned for "Windows"
and "Microsoft". Both linked to the entity called "Microsoft Windows" (Q1406) in
Wikidata.
Now the mention text "Windows" is resolved to the "computer" sense embedding
given the "computer" context around it.
In vector space, this sense is now close to the learned "computer" sense of "Windows"
or in fact the same vector, which then is resolved to the "Microsoft Windows" entity.
Now the correct entity can be returned even if the label text does only have a partial
match.
Another advantage is that given "Windows Vista" is not an entity in Wikidata the
"Windows" word is still resolved to the "computer" sense and the entity "Microsoft
Windows" is returned, which is better than no match. In addition "Vista" can have
a "Microsoft" representation in the MSE model, which is close to the sense vectors
for "Microsoft" or "Windows" and is therefore linked to "Microsoft Windows" or "Mi-
crosoft".
For the mention "operating system" the most "computer" sense of "operating" and
"system" are found. The target entity "Operating System" (Q9135) has two repre-
sentations inside the vector index. One for "Operating" and one for "System". Each
learned with the "computer" context of the entity. Now the model compares the co-
sine similarity of all sense embeddings for mention words with all representations
inside the index. This should return the correct entity Q9135 as one of its embed-
dings is really close to one of the mentions embeddings. The hypothesis is that
NEDard works better for single word mentions and entities.

NEDardv2:
Inside the vector index is an embedding for "Microsoft Windows" (Q1406), which
is a weighted combination of the "computer" sense of "Microsoft" and "Windows".
Assumed that "Windows" is the term with the higher tf-idf -score (more importance
in entity labels) the "Windows" sense embedding has more impact on the entity em-
bedding.
The mention text "Windows" is resolved to the "computer" sense embedding given
the "computer" context around it.
This embedding should now be similar to the "Microsoft Windows" vector caused
by their "computer" sense.
For "operating system" there is an embedding in the index with the weighted av-
erage of the "computer" sense of "operating" and "system". The embeddings for the
words of the mention are now averaged using the same weight. This should result in
a similar vector to the one in the index. Therefore, resulting in the correct entity to be
matched. The hypothesis is that NEDardv2 works better for multi-word mentions.
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4.2.6 Theoretical run time

Given the number of mentions during querying or the number of entities during
learning as m, the time complexity can be defined as follows:
The lookup of the sense for each mention is constant in average over all mentions.
This is because it depends on the number of senses per word, which is specific
for each word and independent of the other words, and a fixed number of context
words. The computation of the embedding for the all mentions/entity labels runs in
O(m).
The training, therefore, runs in O(m) where m denoted the number of entities to
learn.
For a query, the embedding of each mention needs to be compared to all candidates
C of that mention. Resulting in O(m ∗ |C|) with |C| being the upper bound for the
number of candidates per mention. When using the candidate list |C| is bounded by
the max amount of candidates for a mention. This is 148,641 for the candidate list
used in this thesis. However, the average number of candidates per mentions is 1.28
on this list. If no candidate list is used |C| is the number of entities known to the
model and therefore up to all Wikidata entities (53,646,279 in February 2019).
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Chapter 5

Results

5.1 Evaluation setting

This section explains the setup of the evaluation and introduces the models evalu-
ated.
In this section, a mention is a substring in text denoting an entity whereas disam-
biguation is a unique occurrence of a mention at a specific position. Therefore a text
can contain the mention "Apple", but one disambiguation in a "computer" context
and one in a "fruit" context. When referring to candidates, the candidate set intro-
duced in section 3.3 is meant.

5.1.1 Wikidata context

To speed up run time we train the NEDard models used for evaluation on a sub-
set of the Wikidata entities. Representations for the first 5 million Wikidata entities
are learned. The first entities are the ones ordered numerically by the Wikidata id
with "Q45" < "Q100". These entities cover most entities found in the evaluation set.
This results in 3,661,533 learned entities. The rest of the entities could not be learned
as there are missing vector representations for their label words in the underlying
Sensegram model.

5.1.2 The evaluation sets

Chapter 3 introduces the evaluation set and describes its creation. Note that both
NEDard models never use the evaluation sets for training.
The evaluation set used for evaluation is forged out of the English Wikipedia (2018-
11-23 12:02:59). It consists of the plain text and a list of mentions in each article. This
is the Xeval set:

Article Articles text Position Mention
Windows "Windows is a operating system..." [12:28] operating system
Windows "Windows is a operating system..." [0:7] Windows

For each entry in Xeval its correct Wikidata entity is stored in yeval :

Mention text Correct Wikidata id Wikipedia article
operating system Q9135 Operating_system

Windows Q1406 Microsoft_Windows

Full set The main evaluation is done on a data set created by matching found
links to entities identified as named entities with the NER method introduced in sec-
tion 3.1.4. The full evaluation set X f ull contains 1.5 GB of text from the first 168941
Wikipedia articles in the data dump. It includes 5609258 mentions.
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FIGURE 5.1: Ordered distribution of the maximum candidate rele-
vance for each disambiguation inside X2k. Disambiguation No. is a

counter.

No NER set Another evaluation set is created similar to X f ull , but without re-
stricting to identified named entities. Xnoner contains the first 2,000 articles from
the Wikipedia data dump. Including 151,215 disambiguations.

2k set For this thesis, a subset of X f ull is used. The first 2,000 articles out of X f ull
are selected, resulting in X2k. As mentioned above the NEDard models are trained
only on a subset of Wikidata entities. To give them a fair comparison to other mod-
els the X2k evaluation set is filtered for mentions linking only to known entities. The
model is trained on the first 5 million entities out of Wikidata, resulting in 3,661,533
actually learned entities.
The evaluation set is limited to the mentions linked to those 3,661,533 entities. The
comparison to other models stays the same as they are evaluated on the exact same
mentions.
This results in 2,000 articles and 100,320 disambiguations.
To understand the characteristics and create more evaluation sets with different
characteristics, we analyze X2k. We research the question is "how ambiguous is
the evaluation set"? As a rating for ambiguity, the maximum relevance score for
a mention’s candidates is chosen. A high maximum relevance indicated one strong
candidate and therefore less ambiguity of the mention. The distribution of the maxi-
mum candidate relevancy for all disambiguations inside X2k is plotted in 5.1. We can
see that out of the 100, 320 disambiguations almost 50 percent have a single really
strong candidate. Therefore, they are not ambiguous and considering a candidate
other than the most relevant is certainly a bad idea.

Ambiguous set Using the insights from X2k, a subset of ambiguous mentions is
selected. This means selecting mentions that have more than one strong candidate.
As a threshold, 0.8 for the highest relevance score is chosen, resulting in 20, 626 dis-
ambiguations from X2k meeting the criteria. The new evaluation set is called Xambig.

Single word set To further understand the evaluation set we plot the distribution
of words per mention in 5.2. This represents how many disambiguations of our eval-
uation set have that number of words in their mention. E.g. "Apple" has only one
word, but "Microsoft Windows" has two. We can deduct that the ambiguous men-
tions are skewed towards one word. Therefore, for our third evaluation set Xoneword
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FIGURE 5.2: Distribution words per mention. Showing the number of
disambiguations inside the evaluation sets with this number of words

in the mention.

the single word mention subset of X2k is chosen, resulting in 37, 732 disambigua-
tions.

All evaluation sets represent different aspects of NED and give us the ability to com-
pare the models on slightly different tasks.

5.2 The models compared

To make meaningful evaluations, we compare NEDardv1 and NEDardv2 on multi-
ple baselines as well as a naturally arising upper bound (Oracle performance).

5.2.1 Oracle performance

The Oracle performance is the performance of a model that always chooses the cor-
rect candidate. This means that it is only wrong if the correct candidate is not present
in the candidate list. The Oracle performance has been calculated for each evaluation
set to get to upper bound for the performance of the models.

5.2.2 Random entity

This model is the expected outcome of choosing a random entity out of the 3661533
entities learned by NEDard. This baseline gives a representation of the difficulty
without using a candidate list. The chance of a disambiguation being correct is

1
3661533 ≈ 2.73 ∗ 10−7.

5.2.3 Baseline 1 - Random choice

The first simple baseline takes a random candidate for each word with a uniform
random distribution.
This simple baseline helps to get a lower bound for disambiguation. Words with
few candidates will have a higher random chance, therefore modeling the difficulty
of disambiguation on the given mentions. In other words, the baseline identifies the
difficulty of the evaluation set.
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5.2.4 Baseline 2 - Link relevance

For the second baseline, the same candidates as for baseline1 are used. For each
mention text, the entity with the highest probability (relevance) of having it as link
text is returned.
While this works well for the really popular meanings of mentions (such as the com-
puter sense for "Apple"), it cannot disambiguate the less popular meaning ("Apple"
as fruit).

5.2.5 Reference - DBPedia spotlight

As a reference, DBPedia spotlight is used. DBPedia links given mentions to DBPedia
resources, which are linked to Wikipedia articles or Wikidata entities. DBPedia spot-
light is used as a reference as it provides reproducible disambiguation only step. For
evaluation, we run a local instance of the DBPedia spotlight server using Docker.

5.2.6 The NEDard models

The NEDard models used in this evaluation are trained with the following settings:

• A Sensegram model trained by the Sensegram authors is used. It contains
word embeddings without lower casing for UTF-8 words.

• The embeddings used have 300 dimensions.

• Sensegram is configured to use a context window size of 10 tokens and the
three most predictive words (max_context_words = 3 given to Sensegram
model).

• The models are learned with the Wikidata context out of entity description and
the labels of all "subclass_of" parents.

• The Wikidata knowledge graph is reduced to the first 5 million Wikidata enti-
ties for faster runtime.

• The machine used for training had 23GB of RAM and an AMD FX(tm)-8150
Eight-Core Processor with 3.6GHz clock speed.

Note: Some entities do not have a vector representation, because none of their label
tokens were known to the Sensegram model.

NEDardv1

• Two models are built: One with ignore_case = True and one with ignore_case =
False. Therefore considering senses of all casings or only of the given one dur-
ing sense disambiguation.

Both NEDardv1 variants result in a 16GB large index file with around 7 million en-
tries. This is because an entity has one vector representation per word in its label.
Training consumed 20GB RAM and took 40 hours.
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NEDardv2

• A tf-idf model for the embedding weights is learned based on the labels of the
given 5 million Wikidata entities. Considering the entity labels as documents.

• The model is trained using ignore_case = False. This matches the best perfor-
mance in earlier testing on NEDard.

The model results in an 8.4GB large index file. Each entry is representing a different
Wikidata entity. Training consumed 16GB RAM and took 30 hours.

5.3 Evaluation run

We evaluate every model on the same task:
Given a mention and the text around it from an evaluation set Xeval suggest the Wiki-
data id for this disambiguation. Considering the example in 5.1.2 a model is asked
to disambiguate "operating system" and "Windows". Then a 1 is assigned if the sug-
gestion is correct or a 0 if not, thus becoming a binary rating for each disambiguation.

No. Mention Suggestion Correct isCorrect
0 operating system Q42 (Douglas Adams) Q9135 0
1 Windows Q1406 (Microsoft Windows) Q1406 1
...

The Metric

The NED task in this thesis has only one correct result per disambiguation. As metric
the accuracy of the prediction is chosen. For each article a ∈ {a0, ..., an}we record the
correct disambiguations correct(a) and total disambiguations total(a). The accuracy
of the disambiguation is defined as

Accuracy =
∑n

i=0 correct(ai)

∑n
i=0 total(ai)

(5.1)

Given one article with 100 mentions where 80 were linked correctly (isCorrect = 1)
the result becomes 80/100 = 0.8. Given two articles with one time 100 and one
time 50 mentions where one time 40 and one time 80 are correct the result be-
comes 80+40

100+50 = 0.8. This metric is chosen as it is the most used metric to evaluate
disambiguation-only NED models.

5.4 Empirical results

Table 5.1 lists the results for all evaluation runs. For each model and model configu-
ration we report the accuracy.
Running the evaluation takes between 20 minutes to 1 hours depending on the eval-
uation set and candidate policy. Memory consumption is about 12-16 GB.

5.4.1 Oracle performance

It can be observed that the Oracle has almost 100% accuracy on all evaluation sets.
This means that in theory, each model should be able to find the correct candidate.
The Oracle is the upper bound for evaluation results on the evaluation sets.
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Accuracy Evaluation set
#disambig.

Model
X2k
100,320

Xambig
20,626

Xoneword
37,732

Xnoner
151,215

Oracle 0.989 0.989 0.990 0.977
Random entity 0.000 0.000 0.000 0.000
Baseline1 (Random candidate) 0.449 0.083 0.152 0.465
Baseline2 (Highest relevance) 0.895 0.613 0.817 0.876
Reference (DBpedia spotlight) 0.866 0.607 0.780 0.835
NEDardv1 (case + candidates) 0.719 0.400 0.515 0.720
NEDardv1 (nocase + candidates) 0.720 0.397 0.523 0.719
NEDardv1 (case + all) 0.288 0.265 0.548 0.240
NEDardv2 (case + candidates) 0.738 0.402 0.567 0.731
NEDardv2 (case + all) 0.313 0.142 0.241 0.379

TABLE 5.1: Results of the evaluation runs rounded to 3 decimal dig-
its. Case = case is not ignored during disambiguation. nocase = case
is ignored during disambiguation. candidates = only candidates are

considered. all = all entities in the index are considered.

5.4.2 Baseline 1 - Random choice

The random choice behaves like expected on the three evaluation sets. It can be
seen as a lower bound for disambiguations and a metric for the difficulty of the
evaluation set. This is because a mention with few candidates has a higher chance
of being correct at random. X2k has a moderate difficulty with the random guess
being correct in 45% of the cases. On Xambig the chance of getting the correct entity
at random is way less. Therefore Xambig is a more demanding evaluation set. On
Xoneword the chance is also low, probably because single words are more likely to be
more ambiguous.

5.4.3 Baseline 2 - Highest relevance

Although baseline 2 is rather simple, it provides high scores on all evaluation sets. In
general choosing, the most relevant candidate is not a bad idea, and as the evaluation
set is extracted from Wikipedia, it makes sense that baseline2 performs rather well.
Baseline 2 is the best model on X2k as this evaluation set is skewed towards mentions
with a single relevant candidate as we saw earlier in 5.1. This means that using
the prior probability to choose a candidate is a good guess and the relevancy is an
essential feature for disambiguation.
On Xambig the baseline does not perform equally well. This means that Xambig gives
a chance to models focusing on mentions with multiple strong candidates. Still,
baseline 2 has the highest accuracy of all models which means that no other model
has been able to disambiguate the more ambiguous mentions correctly. On Xoneword
behaves a slightly worse than on X2k, which makes sense as ambiguous mentions
are skewed towards single word mentions.
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5.4.4 Reference - DBPedia spotlight

The reference implementation behaves similarly to baseline2. Especially on the am-
biguous Xambig evaluation set, we observe almost the same performance. Assuming
that baseline2 has an advantage by being trained on Wikipedia links, it can be as-
sumed that the reference implementation is slightly better than baseline2 in a real-
life scenario.

5.4.5 NEDardv1

The evaluation of NEDardv1 is more involved as the models have a lot of differ-
ent settings to be evaluated. The following paragraphs deal with each configuration
evaluated. As seen in 5.1 none of the NEDardv1 models outperforms baseline2 on
any evaluation set. While this is a sign that NEDardv1 has issues performing NED,
each configuration yields interesting results leading to further analysis in 5.5. Re-
mark: NEDardv1 is the model that calculates a sense embedding for each word in
the mention and each word of an entity, and then chooses the most similar candidate
over all combinations as best matching entity.

Case + candidates In this setting, the model deals with different cases of words as
different words (and therefore different senses). In this setting, only candidates are
considered and not all known entities.

Evaluation set Baseline2 NEDardv1 Difference (NEDardv1 - Baseline2)
X2k 0.895 0.719 -0.176

Xambig 0.613 0.400 -0.213
Xoneword 0.817 0.515 -0.302

NEDardv1 has significantly worse performance than the highest relevancy baseline.
Even on the Xambig, which should give models an advantage which consider more
than the most relevant candidate.
In other words, NEDardv1 does not choose the correct candidate and therefore has
issues performing disambiguation between candidates.

The next question is if there are disambiguations where NEDardv1 manages to find
the correct entity and baseline2 does not?
Analyzing both models on X2k (with 100,320 disambiguations) baseline2 fails at
10, 492 disambiguations. NEDardv1 fails at 28, 141 disambiguations. Out of all
wrong disambiguations of baseline2, NEDardv1 had 1, 656 correct. In other words,
there seems to be potential for combining them both to achieve better scores. Two ex-
amples are NEDardv1 predicting "Diagnosis procedure" and the baseline predicting
"Diagnosis" with "Diagnosis procedure" being correct. This is most likely just luck
of picking the correct entity with "Diagnosis" in its label. For "Gotham" the baseline
suggests the TV Series whereas NEDardv1 correctly suggests the city from Batman.
But this is because NEDardv1 did not know the TV Series "Gotham". Therefore it
needs to be checked, whether there is a real use in combining both models.

Nocase + candidates In this setting, the model does not care about the casing of the
mentions, therefore considering also the "apple" senses if asked for "Apple". Again
only candidates are considered. This behaves close to to the case sensitive model. In
conclusion with the given pre-trained Sensegram model, the casing of mentions has
no significant impact on the NED performance of NEDardv1.
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Case + all In this setting the model considers different casing of mentions. Instead
of only considering the candidates, all entities are considered.

Evaluation set Baseline2 NEDardv1 Difference (NEDardv1 - Baseline2)
X2k 0.895 0.288 -0.607

Xambig 0.613 0.265 -0.348
Xoneword 0.817 0.548 -0.268

These results are interesting as the random guess out of all learned entities known
to the NEDard model has a chance of 1/3721342. This is because the model knows
embeddings for 3,721,342 different entities. So even though it is selecting one of
those 3,721,342 entities, it can get a substantial amount of disambiguations correct.
This indicates that the core idea of using multi-sense word embeddings does work
for the NED problem.
On the X2k evaluation set the difference is the largest. NEDardv1 performs better on
Xambig relative to X2k, again indicating that there is value in multi-sense embedding
for NED. The smallest difference is achieved for Xoneword. It even performs better
than the candidate only version.

5.4.6 NEDardv2

Analog to NEDardv1 the evaluation of NEDardv2 is more involved, because of dif-
ferent settings. The following paragraphs deal with each configuration evaluated.
As seen in 5.1 none of the NEDardv2 models outperforms baseline2 on any evalua-
tion set. While this is again a sign that NEDardv2 has difficulties with performing
NED, each configuration yields interesting results leading to further analysis in 5.5.
Remark: NEDardv2 is the model averaging sense embeddings over the words of a
mention and an entity label with tf-idf to get a single mention and entity embedding.

case + candidates In this setting, the case of the mention is kept, and only candi-
dates are considered. The model improves over NEDardv1 slightly. This means that
the tf-idf averaging works better for multi-word mentions than using an embedding
per word. This seems to be particularly true for mentions consisting of only one
word, which means there is value in weighting words in entity labels during train-
ing. Compared to baseline2 NEDardv2 does not improve either.
In direct comparison NEDardv2 had 26,281 disambiguations wrong on X2k (with
100,320 disambiguations) whereas baseline2 had 10492 wrong. Out of those 10,492,
NEDardv2 had 2004 correct. This again suggests use in combining both models,
which is done later on.

case + all In this setting, the case of the mention is kept, and all entities are con-
sidered. This results of NEDardv2 with this setting are different from the one of
NEDardv1.

Evaluation set Baseline2 NEDardv2 Difference (NEDardv2 - Baseline2)
X2k 0.895 0.313 -0.582

Xambig 0.613 0.142 -0.471
Xoneword 0.817 0.241 -0.576

The scores are aligned with the assumed difficulty of the evaluation set. This means
that NEDardv2 also suffers from more ambiguity in the words.
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FIGURE 5.3: Cluster of famous women in NEDardv1 model. 3D t-sne
representation on the left and cosine distance in original space on the

right. Created with [23].

No NER evaluation set As seen in 5.1 not filtering the inter-article links for recog-
nized named entities does not change the performance order of the models.

5.5 Error analysis

This part of the thesis provides deeper insights into why the models behave the way
they behave on the evaluation sets.

Visualization A good starting point to analyze embedding models is to visual-
ize them. For this purpose, the first 15000 entity embeddings from the model are
dumped and transformed into a 3D representation using t-sne (see 4.1.1). To under-
stand the implications of the visualization the used metric in the original space needs
to be considered, too. We set the T-sne parameters learning rate of 10, perplexity of
31 and 315 iterations. For the visualization, the label of each entity is mapped from
Wikidata id to Wikipedia article name. In this thesis, the visualization is performed
with the tensorflow projector tool [23].

5.5.1 NEDardv1

On first sight, there are many dense clusters in the visualization. 5.3 shows the whole
visualization and selects one of the clusters in detail. It turns out that this cluster rep-
resents entities for famous women. As NEDardv1 learns a sense for each word in
the entity label a "women names" information seems to be derived from the context.
Here the first issue with the NEDardv1 model emerges: Multiple entities share em-
beddings. The selected entity "Shelly-Ann Fraser-Pryce" is not different from "Eliza-
beth Ann Nalley" as seen by cosine distance of 0. That is because this representation
is the "female" sense of "Ann". The same is for "Hazel Bishop" and "Hazel Alden
Reason" as the representation of "Hazel" is the same for both entities. This indicates
there are too few senses to distinguish between different "Hazel"s, which does not



Chapter 5. Results 37

FIGURE 5.4: 3D t-sne visualization of the 100 nearest embeddings to
"Apple" in NEDardv1 model on the left. Cosine distance to "Win-

dows_Server" in original space on the right. Created with [23].

disambiguate anything.

To investigate this further the 100 neighbors of the entity "Apple" are visualized in
5.4. The clustering of the senses makes sense as we can see a split into office prod-
ucts, operating systems, and server related software. But looking at the "Windows"
cluster, we can see that all the products have the same representation (a cosine dis-
tance of 0). This is because they all share the same "computer" sense embedding of
"Windows". There is no "Vista" sense of "Windows" and no "XP" sense of "Windows".

Example query For further investigation, the following text is considered:

Apple Inc. is an American multinational technology company headquartered in
Cupertino, California, that designs, develops, and sells consumer electronics, com-
puter software, and online services.

The identified mentions are:

Start Stop Text
0 10 Apple Inc.
76 85 Cupertino
87 97 California

Results of NEDardv1 are:

Wikidata Id Similarity ∈ [0, 1] Entity name
Q312 1.000 Apple Inc.

Q189471 0.999 Cupertino California (City)
Q3650742 0.999 California Golden Bears football team

Apple Inc. is split into the words "Apple" and "Inc." for which the matching sense
embedding given the context around is calculated.
The context for Apple also includes "Inc" while the context for "Inc" also includes
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"Apple". Both are restricted to all known candidates for "Apple Inc.":

Q312#0, Q421253#0, Q421253#1

namely, Q312 is ’Apple’ and Q421253 is ’Apple Store’.
The distances to the ’Apple’ mention embedding are [0.00, 0.00, 0.884].
The distances to the ’Inc.’ mention embedding are [0.581, 0.581, 0.813].
Remember, that a smaller distance is a greater similarity. Therefore the ’Inc.’ sense
embedding is further away from our candidates, which is what we would expect as
’Apple’ should be more discriminatory. NEDardv1 is going to choose the smallest
distance over all "candidate embedding"/"mention word embedding" combinations.
This is one of the distances to the word ’Apple’ in the mention. And here the issue
can be seen: Both the ’Apple’ word in the ’Apple’ entity and the ’Apple’ word in the
’Apple store’ entity are the same sense embedding during learning. They have the
same distance of 0 to our ’Apple’ embedding in the mention. In other words, there
is no ’Apple store’ sense for word ’Apple’ in the MSE model.

In the MSE model ’Apple’ has 3 senses with a similar probability for each. The
following are these senses and their most similar senses in the MSE model:

’Apple#1’ (technology):
[(’Apple\_iPod#1’, 0.912), (’PalmPilot#1’, 0.910), (’ibooks#1’, 0.910)]

’Apple#2’ (fruit):
[(’APPLE#2’, 0.995), (’Strawberry#1’, 0.971), (’Peach#2’, 0.969)]

’Apple#3’ (other):
[(’apple#3’, 0.999), (’APPLE#3’, 0.999), (’level#1’, 0.983),
(’LEVEL#1’, 0.983), (’Level#1’, 0.983), (’evolution#2’, 0.983),
(’mouse#2’, 0.983), (’Window#3’, 0.982)]

There is one technology, one fruit and one sense for the rest, which is what we would
expect for the word "Apple". But there is no "store" sense of "Apple" indicating "Ap-
ple Store".
As one can see the system now chooses one arbitrary entity as the result because the
candidates for ’Apple’ and ’Apple store’ have the same distance. They are in fact the
same vector as described. In this case, ’Apple’ (Q312) is chosen as it is the first item
in the list.

Next up is ’Cupertino’. NEDardv1 retrieves a sense embedding for ’Cupertino’
given its context. Cupertino has the following candidate entities:

Q189471#0, Q110739#0, Q110739#1, Q110739#2, Q52133#0

Namely ’Cupertino’ (City), three times ’Santa Clara County’, and ’Copertino’ (Italy).
The distances to the embedding of the mention word are [0.00, 0.4, 0.75, 0.433, 0.776].
Here the disambiguation succeeds as the distance to the desired entity is much
smaller than to other candidates. This is reflected by the sense embeddings that
are most similar to the given mention embedding. All of them are Californian cities.
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[(’Cupertino#1’, 1.0), (’Rocklin#1’, 0.981),
(’Glendora#1’, 0.981), (’Poway#1’, 0.979)].

So here we have a "Californian City" sense of "Cupertino", which made the disam-
biguation succeed.

Next up is ’California’. The mention ’California’ has 254 candidates. Same as for
’Apple Inc.’ some of the candidates are the same representation of the word ’Cali-
fornia’ in the candidate entity. This means that they identify ’California’ as a coun-
try, but are not specific enough to identify the entity. In this case, the first candidate
’Q3650742#0’ is the ’California’ in ’California Golden Bears football’, and it is chosen
as the suggestion for the mention.
The word ’California’ has three senses in the MSE model. One for Californian cities,
one for the state of California and one for the rest (history, western, etc.). Again,
there is no ’California Golden Bears football’ or ’football team’ sense of ’California’.
Again, an arbitrary candidate with this sense embedding is chosen because it has the
highest similarity (in fact same embedding). Again, multiple entities are represented
by the same embedding as there is no specific sense for the entity meaning of their
compound words.
Given the new example: "Berlin is a world city of culture, politics, media, and sci-
ence." we want Berlin to be the city of Berlin and not something else. But the result-
ing entity is the "Humboldt University of Berlin" and the returned sense vector for
the mention is close to "Berlin#1" and "Munich#2". "Frankfurt#1" and "Dresden#2".
It can be assumed that this is not the "University" sense of those cities. Therefore,
again a sense is missing or cannot be found and an arbitrary entity is chosen. A
more narrow MSE model should learn a "University" sense of "Berlin".

Conclusion: In the NEDardv1 model senses are shared across entities. There are
too few senses in the MSE model to represent a 1:1 entity sense matching. The senses
of the MSE model are too broad. During disambiguation "Windows XP" and "Win-
dows Vista" or not different if the "Windows" component is the same for both and
has the most similar matching. This results in an arbitrary entity with this sense of
"Windows" to be chosen. Multi-word mentions, therefore, are not resolved correctly
by NEDardv1. Same applies for multi-word entities if the mention is "Windows",
but a specific Windows is meant as all "Windows" entity representations share the
same entity embedding.
For names, just the information that they are names is learned from the context.
While this is disambiguating a human entity from other non-human entities with
human-like names, it is not narrow enough to identify one person, even the last
name.

5.5.2 NEDardv2

Now, we have a look at the NEDardv2 model, which is designed to deal with multi-
word mentions differently. For each mention and each entity, a single embedding is
computed using the tf-idf weighted average of its words sense embeddings.

Visualization The visualized embedding model is shown in 5.5. We can easily see
that office products have their cluster, operating systems have their cluster (with the
server systems being different from the personal ones), search engines and hard-
ware manufacturers each have their cluster. Also the entities "Microsoft", "Microsoft
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FIGURE 5.5: Cluster of the 100 nearest embedding to "Microsoft" in
NEDardv2 model. 3D t-sne representation on the left and cosine dis-

tance in original space on the right. Created with [23].

Office" and "Microsoft Excel" are not the same in the original space. This means
as expected NEDardv2 does not generate the same embedding for a word shared
over mentions like NEDardv1. T-sne visualized the entities as we would expect,
but the closest embeddings by cosine distance are fuzzy. Intel and Lenovo are quite
similar to "Microsoft", more similar than Microsoft products. This behavior is what
makes the results of embedding based approaches fuzzy. Furthermore the low co-
sine similarity between "Microsoft" and "Microsoft Office" can be explained with the
combination of "Office" and "Microsoft" not being close to "Microsoft" anymore.

Example query For further investigation the following text is considered:

Apple Inc. is an American multinational technology company headquartered in
Cupertino, California, that designs, develops, and sells consumer electronics, com-
puter software, and online services.

The identified mentions are:

Start Stop Text
0 10 Apple Inc.
76 85 Cupertino
87 97 California

Results are

Wikidata Id Similarity ∈ [0, 1] Entity name
Q312 1.000 Apple Inc.

Q189471 0.999 Cupertino California (City)
Q1134176 0.999 California,_Pennsylvania

Apple Inc. has the candidates [’Q312’, ’Q421253’] namely "Apple" and "Apple
Store". They only have one entity embedding according to the NEDardv2 model.
The distances to our mention "Apple Inc." are [0.211 0.260]. The NEDardv2 model
correctly identifies "Apple Inc." being closer to the computer representation of "Ap-
ple", than to the meaning of "Apple" and "Store".
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Cupertino has candidates [’Q189471’, ’Q110739’, ’Q52133’] namely "Cupertino",
"Santa Clara County" and "Copertino". Distances to the mention "Cupertino" are
[0.00 0.500 0.776]. This means that the model correctly identifies the meaning of
"Cupertino" and knows that "Cupertino" is related to Santa Clara County (located
in), even though "Cupertino" is not in the entity name. It also knows that "Cuper-
tino" is different from "Copertino".

California has 254 candidates. Instead of predicting Q99 ("California" state), Q1134176
("California" borough in Pennsylvania) is predicted. Here the real entity has a lower
similarity than the wrong one. This is because the context of the mention makes the
model resolve to the wrong sense of "California".

Conclusion Combination results of NEDardv2 are fuzzy. Single-word mentions
of multi-word entities can fail because partial mentions are not similar to the entity
embedding anymore. E.g., the partial "computer"-sense mention "Microsoft" is not
anymore near the entity "Microsoft Windows" using cosine similarity, because of
"Windows" in the entity label. However, it still can be closer than other candidates.
NEDardv2 solves the issue NEDardv1 has with too few senses per word and shared
embeddings across entities.

Different types of mentions During analysis, it became clear, that there are multi-
ple types of named entity disambiguation on the Wikipedia corpus.

• The same word with different meanings. E.g. "Apple" as fruit vs. "Apple" as
a company. This is not an issue for the proposed model as the different senses
can be derived from context.

• The same real-world object in a different context. E.g., "Berlin" can mean the
entity for "Berlin" or the entity for "Alt-Berlin", which is the medieval version
of Berlin. This is an issue for the proposed model as an extra sense for the
medieval entity needs to exist. If the MSE model only knows one "city" repre-
sentation for Berlin the disambiguation fails.

• Mention with same name and context but a different entity. E.g. "French rev-
olution" can either be the documentary series or the real revolution. The pro-
posed model will fail as it cannot derive a different sense for both.

• Too specific entities. E.g., the mention "Jews" can be linked to the Wikidata
entity "Jews during the first and second world war" in the evaluation set. This
entity is way too specific for the proposed model to perform disambiguation.

• Words of mention are not featured in entity title. E.g., the mention "Holy
see" is linked to "Vatican". Due to the similarity in embedding space, the pro-
posed models should be able to identify the correct entity. However especially
NEDardv1 struggles with this task as another candidate with a similar "Holy"
or "see" in its title will be suggested first.

Multi word mentions Both proposed models used a different way of dealing with
multiple words in mentions and entities. Both models fail in this task. A core issue
of using sense embeddings for NED, therefore, is extracting a mention embedding
for multi-word mentions.
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Noise in knowledge base Another point of failure is too much noise in the candi-
date list and the Wikidata entities. The candidate list contains entities that are rarely
used and most likely not the correct candidate.
The Wikidata knowledge graph contains too specific entities such as "Jews during
the first and second world war". Specially NEDardv1 is sensitive to unlikely entities
with many words in their labels. In both cases, the models would perform better if
such noise is reduced. Either by filtering out less relevant candidates or by filtering
the entities learned, limiting the model to a subset of the NED problem.

Too broad senses As seen the proposed models rely on narrow senses for each
word to improve NED performance. The semantic resolution can be increased to
split senses more often during training of the MSE model. Increasing the semantic
resolution might not solve this issue as there are not enough different contexts to
distinguish the senses.

Missing words during learning Missing words in the MSE model leads to missing
information during entity learning and therefore more ambiguity. Ignoring entities
with too many missing words might be a good idea to tackle this issue.

5.6 Potential of combination

As it has been shown both models fail to solve the NED problem on their own, the
following combinations with baseline2 are evaluated.

• Truncating the candidate list based on the relevance score, ignoring all candi-
dates for a mention with relevance ≤ x. This tackles the noise issue introduced
by the candidate list.

• Combining NEDard similarity score and relevance score. This is done by learn-
ing a linear combination of both scores based on the evaluation set to predict
the correct entity. In the end after the linear combination is applied for all can-
didates again the candidate with the highest score is chosen. For training the
evaluation set needs to be split into a training set and a test set to evaluate the
generalization performance.

Minimum relevance As minimum candidate relevance 0.08 is set. Only consider-
ing candidates with relevance > 0.08:

Accuracy Evaluation set
#disambig.

Model
X2k
100,320

Xambig
20,626

Xoneword
37,732

Xnoner
151,215

Baseline2 (Highest relevance) 0.895 0.613 0.817 0.876
NEDardv1 (case + candidates) 0.719 0.400 0.515 0.720
NEDardv1 (case + candidates > 0.08) 0.889 0.615 0.810 -
NEDardv2 (case + candidates) 0.738 0.402 0.567 0.731
NEDardv2 (case + candidates > 0.08) 0.883 0.606 0.797 0.861

The accuracy jumps close to the results of baseline2, but still there is no significant
advantage over the baseline2 model.
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Linear combination For the combination, logistic regression is used on all candi-
dates of a disambiguation. Each candidate is labeled 0 if it is the wrong and 1 if it is
the correct entity for its disambiguation. The task is learning to predict the likelihood
for a candidate to be correct given its relevance and similarity score, therefore acting
as a simple baseline of combining both models. For evaluation each evaluation set
is randomly split into 70% training and 30% test disambiguations.

Evaluation set Baseline2 NEDardv2 Combined
Xambig 0.616 0.409 0.650

Xoneword 0.822 0.583 0.839
X2k 0.904 0.753 0.913

It can be seen that the NEDardv2 combination gives slight improvements for Xoneword
and X2k. It gives a larger improvement on Xambig. This is indicating that the addi-
tional information helps to disambiguate more ambiguous mentions.

5.7 Future work

Investigate performance on entity subset Noise from Wikidata entities influences
the performance of both NEDard models. In future work, it can be investigated how
the performance changes when this noise is removed. In an attempt to remove the
noise introduced by Wikidata entities, restrict them during training. A reasonable
starting point would be to remove all Wikidata meta entities like categories, concepts
or topic groups.
Furthermore, it can be investigated how the performance changes when the NEDard
models are learned only on entities with a single-word label or on entities with only
(proper) nouns in their label. This has the chance of making the senses match to
entities more unambiguously. Another idea is to remove entities that have too few
links from other entities inside Wikidata. These approaches grant insights on the
performance of NEDard on a subset of Wikidata. However, they do not solve the
NED task to disambiguate all entities of Wikidata.

Build an advanced hybrid model Baseline2 and other NED models can be com-
bined with the NEDard models to achieve better performance. For example, choose
the model to use based on the mentions length and its candidates. It is possible to
choose a threshold for the maximum candidate relevance to chose the disambigua-
tion model. The NEDard models can be used in case the mention is ambiguous by
candidate relevance. An advanced hybrid model can be trained by utilizing infor-
mation about the candidates and mentions as features in addition to the score pro-
vided by the models. Furthermore removing unlikely candidates with low relevance
should be considered.

Use another method for multi-word entities This thesis proposed two ways of
dealing with multi-word mentions and entities. Besides, other techniques can be
investigated: For NEDardv1 this means another way to select a candidate over all
candidate-word/mention-word combinations. For NEDardv2 this means another
way of combining embeddings than averaging with tf-idf.

New embedding model The precision of the NEDard models might be increased
by altering the multi-sense embedding model. For example:
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• Train a new Sensegram model with different parameters.

• Increasing the semantic resolution (n parameter) to narrow down words with
too broad sense embeddings. Increasing the semantic resolution makes the
MSE models learn more senses for a word. However, it is unclear if there are
enough different contexts to learn from.

• Normalize words during training. E.g., remove non-ASCII characters. Nor-
malizing the words makes the model robust to different spellings and charac-
ter sets and therefore reducing noise. E.g., the German word "Feuerlöscher"
can be written as "Feuerloescher", but should be learned as the same word.

• Learn representations for bi-grams (tuples of successive words) too. A lot of
entities names consist of more than one word, and a single word embedding
is not incorporating this information, even if the two words frequently occur
together. Learning representations for such bi-grams might make the model
more robust towards multi-word mentions, e.g., "Microsoft Windows".

• Use the AdaGram MSE model instead. Embeddings might behave differently
due to their different training process.

5.8 Conclusion

This thesis evaluated the use of multi-sense word embeddings on the NED task.
Insights are gained on the pitfalls of using multi-sense embeddings for this task.
It has been shown that there is no 1:1 mapping for entities. There are way fewer
senses than entity candidates for a word. Senses are too broad, especially names.
Mentions and entities with multiple words need a well thought out strategy. Parts of
the NED problem are not solvable as the entities are too specific versions of an entity.
Both Wikidata entities and the Wikipedia based candidate list introduce noise, and
it needs to be cleaned from irrelevant entries. The two proposed models do not
advance on the NED task on their own. They might improve a specific part of the
task and therefore are useful in combination with other techniques. It is advised
to use them in combination with other NED models to tackle specific parts of the
problem such as entities that are distinct real-world entities with the same name.
E.g. "Apple" as fruit and company. The best accuracy obtained on an evaluation set
(N2k) is 0.738, having 74,039 out of 100,320 disambiguations correct. Combining the
score obtained by the proposed models with the baseline increased the accuracy on
more ambiguous evaluation sets. The best combination accuracy on the test set of a
linear combination is 0.650 in comparison to 0.616 of the baseline alone.
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