
Word Embeddings in Search
Engines, Quality Evaluation

Bachelor Thesis

Eneko Pinzolas Murua

University of Freiburg

Faculty of Engineering

Department of Computer Science

31st of May, 2017 - 19th of September, 2017

Reviewer: Prof. Dr. Hannah Bast
Supervisor: Prof. Dr. Hannah Bast

Declaration

I hereby declare, that I am the sole author and composer
of my Thesis and that no other sources or learning aids, other
than those listed, have been used. Furthermore, I declare that
I have acknowledged the work of others by providing detailed
references of said work. I hereby also declare, that my Thesis
has not been prepared for another examination or assignment,
either wholly or excerpts thereof.

Place, Date Signature

Contents

Page

Abstract 3

1 Introduction 4
1.1 Problem Description 5
1.2 Motivation . 5

2 Related Work 6
2.1 Representing Documents and Queries as Sets of

Word Embedded Vectors for Information Retrieval 6
2.2 Bridging the Gap: a Semantic Similarity Measure

between Queries and Documents 7

3 Algorithms of the engine 8
3.1 Best Match 25 . 8
3.2 Word Vectors . 9

3.2.1 Document vectors 10
3.3 World Mover’s Distance 11
3.4 Datasets . 13

3.4.1 Training 13
3.4.2 Validation 13

4 Tried and failed techniques 15
4.1 Document Vectors: Lack of power 15
4.2 WMD: Working space problem 15

4.2.1 Top ranking reorder 16
4.3 Generate sinonyms 17

5 Combining average word vectors with BM25 18
5.1 Computational Complexity 19
5.2 Average Word Vectors 20

1

5.3 Optimization . 21

6 Evaluation 23
6.1 Results . 24
6.2 Error in the normalization that mixes the methods 26

7 Conclusion 27
7.1 Future Work . 27

8 Acknowledgements 28

9 References 29

2

Abstract

In the recent years, Neural networks have become very popu-
lar. They are being used in almost any field of computer science,
and several of them are turning out to be successful. Information
retrieval requires a fast method that compares two batches of text
and gives a score. That score has to represent how similar both
texts are. Most approaches rely on basic text comparisons, while
trying to grab extra information from the users to cater the re-
sults more to their liking. In this bachelor thesis, we propose the
addition of neural network techniques to the comparison process.
More specifically, the usage of word vectors. Revolving word vec-
tors, various techniques have been documented and tested, and
while most of them did not have positive results, the one that
did has been more thoroughly analysed. The approach that is
presented here relies on representing queries and documents as
clusters of words, which are points in space. Then, to quickly
compute the score, the average linkage has been selected as a
comparison method, that is, the distance between the means of
the clusters. This approach has given positive results over the
baseline in both test databases, and the results have been doc-
umented below. The results show a high potential in the use of
word vectors in the IR area.

3

1. INTRODUCTION

Figure 1: Complete flowchart of the ranking process

1 Introduction

Since the introduction of Neural Networks, their brilliant per-
formance in some areas of Machine Learning has led plenty of
researchers to try them out in every possible area, with varying
success. Text comparison is one of those areas, and the results
have been fairly successful. However, implementing those results
into information retrieval impose some challenges that will be
described in more detail in section 1.1.

4

1. INTRODUCTION

1.1 Problem Description

Sadly, the positive results obtained in word comparison, and text
comparison, cannot simply be translated into information re-
trieval. Most of the methods that compare two batches of words
work with batches of similar size. Queries could be said that re-
side in a different space than documents, since they encode the
information in a very different way that documents. This im-
poses a challenge when using text comparison techniques such
as Document Vectors and Word Mover’s Distance, explained at
sections 3.2.1 and 3.3 respectively.

1.2 Motivation

Currently, typical IR techniques use simple processing of the
words in the documents such as Bags of Words. It is a fast and
robust method of text processing, that has had several years of
optimizations, with the state of the art being the BM25 algo-
rithm (section 3.1). This however, fails when trying to identify
synonyms and discards a lot of information such as word or-
dering. Using advanced word comparison techniques has the
potential to make use of both ordering of words, which helps
to identify combined words, and synonyms. Ultimately, this all
is used to improve the quality of the results that the engine
provides.

5

2. RELATED WORK

2 Related Work

In this section we introduce some of the work that has been done
in the field of IR with embeddings in the last year. They are
mainly introductory works since this is a new field to work on.
I will present two of the works in sections 2.1 and 2.2

2.1 Representing Documents and Queries as Sets of
Word Embedded Vectors for Information Retrieval

In this [3] paper, the authors try to approach IR using word
embeddings. They approach the problem in a different way.
Their idea is that computing the mean for the document loses
too much information, since in documents with more than a
single thematic focus, the mean ends up being a point not so
much related to the themes of the document.

Their approachis to show documents as clusters of words,
and instead of computing the centroid, they apply agglomerative
clustering to get a number of clusters that represent the topics
of the document. Then, they compute the likelihood that the
query would appear in the document.

With this method, they are able to approach documents with
multiple focal points.

6

2. RELATED WORK

2.2 Bridging the Gap: a Semantic Similarity Measure
between Queries and Documents

In this [4] paper however, the authors approach a more specific
technique than the other paper. They try to use Word Mover’s
Distance (explained in section 3.3) as a base and try to optimize
it.

They try two things here:

• One, to speed up the process.

• Two, to adapt queries to the semantic space of the docu-
ments.

Their solution to the first problem is basically to relax the
constraint of WMD to be able to parallelize it. To solve the
semantic space problem, they modify the weight of the words
introducing IDF to it. These two changes both speed up and
improve their results.

When trying to emulate their results however, I discovered
that the speed up they propose is already implemented in the
fastemd [7] implementation that Gensim uses, and it still is very
slow.

7

3. ALGORITHMS OF THE ENGINE

3 Algorithms of the engine

3.1 Best Match 25

This is the baseline that has been picked for this thesis. BM25
is widely used as state of the art technique for functions based
on TF-IDF (Term Frequency - Inverted Document Frequency),
and it is simply a natural response to the problems that TF-IDF
brings.

If we only use TF, longer documents will have preference over
short documents. Furthermore, TF tends to go to infinity, and
an upper bound is preferable in ranking systems.

BM25 intends to solve that. First, TF is transformed to an-
other value that has an upper bound, TF*. This is the simplest
form to achieve that:

TF ∗ = TF (k + 1)/(k + TF) where k ∈ [0,∞)

Even if the IDF of TF-IDF is not specially problematic, we are
still interested in partially using the IDF. Again, we will divide
TF* with α, which will be a value in between DF, and 1 (no
normalization).

α = (1− b) + b ∗DL/AV DL

8

3. ALGORITHMS OF THE ENGINE

Figure 2: A geometric illustration of the solution of the King − Man +
Woman = Queen problem

3.2 Word Vectors

Word2vec [1], uses a shallow (2 layered) Recurrent Neural Net-
work to learn a more complex vector representation of words,
given a corpus. The corpus corresponds to a large batch of
text, where the larger, the more refined the vectors that are
outputted. Each word will have a unique vector that represents
it, and every different vector will theoretically represent a word.
However, the algorithm will only recognize the vectors of the
words that appeared in the training corpus.

9

3. ALGORITHMS OF THE ENGINE

The learned words can be used to compute semantic simi-
larity by computing their cosine distance. This can be used to
solve several problems, namely the solution to the sentence If a
man is a king, a woman X. In a well trained model, the solution
is found doing this simple algebraic operation:

vector(”king”)− vector(”man”) + vector(”woman”)

And the result is of course vector(”queen”).

Word2vec embeddings are the basis of our engine. Every tried
and tested engine of this thesis uses a technology that is based
on these embeddings.

3.2.1 Document vectors

Document vectors, or paragraph vectors [2], are the natural evo-
lution of word vectors. They try to capture a deeper meaning
of a document’s words, taking into account the ordering of the
words.

The vector representation is computed by concatenating the
document vector with several word vectors, and trying to com-
pute the next word vector in the given context. The docu-
ment vectors are unique per document, but the word vectors are
shared. Therefore, similar documents will have similar vectors.
Again, the learned vectors can be used to compute similarity
between documents.

This algorithm also requires a corpus, albeit greater in size,
since not only needs to compute word embeddings, it also has
to compute documents embeddings. Given well trained embed-
dings, it is possible to infer the document embedding of a new
document [6]. This is key in the field of IR, since it is highly
improvable that all the documents and queries that are going to
be introduced have been already trained.

10

3. ALGORITHMS OF THE ENGINE

Figure 3: An illustration of the wordmover′sdistance

3.3 World Mover’s Distance

Instead of generating a single vector that represents the whole
document WMD [5] uses every single word vector in the docu-
ment to generate a distance from document to document that is
sensible to synonims. This method tries to emulate the solution
of the Earth Mover’s Distance problem with word vectors.

The problem minimizes the cumulative distance that words
from a document need to travel to become words from another
document, in the context of some word vectors. That is, the
sum of the vectors shown in this image [3]. This is achieved by
several steps:

• The documents are represented as a normalized bag-of-
words vectors. Meaning that if a word wi appears fi times
in a document, the weight of that word will be di = fi

Σn
j=1fj

where n is the number of distinct words in the document,
and fj is the amount of times a word appears in it.

11

3. ALGORITHMS OF THE ENGINE

• Each word, in the context of word embeddings, has a place
in space where it belongs. This is used to calculate eu-
clidean distances between every word in both documents
c(i, j) = ‖xi−xj‖. This is not perfect, as theoretically sim-
ilarity is measured with cosine distance, but it is the only
distance that the algorithm accept.

• Finally we need to make sure that the flow of words that
go from one document to the other is complete and exact.
Let T ∈ Rn×n be a sparse flow matrix, where Tij ≥ 0
represents how much of word i travels to word j, and vice
versa. To make the transformation right, the flow of the
words must match the exact amount of the word’s weight:
Σn

j=1Tij = di.

• The resulting optimization function is as follows:

minT≥0 Σn
i,j=1Tijc(i, j)

subject to:
Σn

j=1Tij = di ∀i ∈ {1, · · · , n}
Σn

j=1Tij = d′j ∀j ∈ {1, · · · , n}

• However, the constraint can be relaxed, limiting only the
outward flow. This creates a lower bound for the WMD
distance, which is tighter:

minT≥0 Σn
i,j=1Tijc(i, j)

subject to:
Σn

j=1Tij = di ∀i ∈ {1, · · · , n}

This leads to a method that is able to compare the similarity
between two batches of text. To compute it in the most efficient
way possible, fastemd [7] is the way to go, and luckily it is
already implemented in Gensim.

12

3. ALGORITHMS OF THE ENGINE

3.4 Datasets

3.4.1 Training

To train the system, different datasets have been used. Ideally,
a huge corpus with text on the topics of the topics that are going
to be searched is wanted, but having that amount of text and
the processing power is unlikely. Thus, a big corpus with text
about anything will have to suffice.

For general training [8] has been used. The corpus was formed
by crawling the WMT News in 2011. It is pre processed and
already clean. It also comes separated beforehand in training
and testing, and only the training part has been touched.

For word2vec, Google’s pre-trained vectors have been used
[9] instead of personally training new ones, since the size of the
corpus they used to train them is very large.

3.4.2 Validation

Two datasets were used during validation. Sadly, as we did
not have a benchmark for the beforehand mentioned corpus,
we could not use their testing set for testing. Most benchmark
datasets are not open to the public, or release the test sets, but
not the data itself, so they require payment. Both datasets used
for validation are from open sources, and there are links in the
bibliography to their content for future use.

13

3. ALGORITHMS OF THE ENGINE

1. The first dataset and benchmark are obtained from here
[10].

It is a relatively small dataset, known for giving poor results
on most IR techniques. However, our interest is not the
final result, but to see if we can get some improvement over
our baseline, so it suffices the requirements.

Furthermore, it was mainly used as a second validation,
after optimizing over the second one.

2. The second dataset and benchmark were obtained from
[11].

It is a significantly cleaned dataset, consisting on almost
140K documents that consist of movie title and their re-
view. The benchmark was also provided with some queries
and the relevant results that should show up.

This dataset is the one that has been used to check if
the methods used were good, and to optimize the hyper-
parameters.

14

4. TRIED AND FAILED TECHNIQUES

4 Tried and failed techniques

In this section all the techniques that have been tried are listed,
and an assumption on why they failed to show positive results.

4.1 Document Vectors: Lack of power

Document vectors tend to need a corpus bigger in size than word
vectors. To compute them, a lot of computer power is required,
RAM specifically, since all the vectors have to be stored in there.
Due to computer power limitations, it was not possible to use
the whole corpus to compute document embeddings, and smaller
batches had to be used. This heavily limits the potential of the
vectors, and their quality is nowhere near the quality of Google’s
pre-trained word vectors.

Ideally, a separate corpus of queries would have been used to
train the query vectors, and then a transformation applied to
convert them to the document vector space.

4.2 WMD: Working space problem

A similar problem to document vectors arises. In this case the
embeddings are good, and the results obtained at first glance
made some sense. However, compared to the other techniques
this one is painfully slow, with searches that reach the hour to be
completed in a relatively small index of around 190K documents.
The Gensim WMD function was copied to try to optimize the
performance, but on average 1 second was spent per document
in the index. Thus little tests were done with this one.

15

4. TRIED AND FAILED TECHNIQUES

In all of those texts, if the results were personally checked,
only some of the results in the list made sense, and most had
either nothing to do with what was requested. This might have
been due to two reasons, size and the space of existence.

• To solve the difference in size, the requested queries were
duplicated to see if there was any improvement under the
assumption that the words in the query had more weight
to them than those in the documents. The results were
different, but they didn’t seem better.

• The difference in the semantic spaces of queries and doc-
uments cannot be easily overcome. Words in queries are
not simply more important than in documents, they also
tend to be more vague, and represent a broader space of
meanings that in documents.

4.2.1 Top ranking reorder

Due to the time limitations, a faster approach was tried too,
which consisted on taking the top n elements of the ranking list
(it was tested with n = 20) and reorder them according to their
WMD distances to the query. However, as already mentioned,
slowness was not the only problem with this approach, and this
also lowered the results.

16

4. TRIED AND FAILED TECHNIQUES

4.3 Generate sinonyms

With the premise that the queries are too short to obtain suffi-
cient information, and duplicating them doesn’t improve results,
a more elaborated approach was tried, where synonyms are con-
catenated to the queries artificially extend their length in hopes
of positive results. With the use of word vectors, we can try
to find synonyms to a word. To obtain them, the words in the
trained vocabulary are compared to the given word, and the
closest words are picked as candidates.

However, despite the good quality of the embeddings, words
have more than one meaning, and embeddings are not able to
distinguish to which meaning of those a specific word in a query
is referring to. This leads to valid synonyms that don’t have
much to do with the query, and do more damage than help. It
also introduces words that do not exist in our index sometimes,
and have to be eliminated, making the effort moot. This is a
preprocess method that can be applied to any search technique
in hand, and it was tested with all the methods without results.

17

5. COMBINING AVERAGE WORD VECTORS WITH BM25

Figure 4: Illustration of the distance between the query (black) and a docu-
ment (white)

5 Combining average word vectors with BM25

While the previous attempts were more complex, they could
not beat this simple combination. Due to the poor quality of
the document embeddings generated, this workaround is pro-
posed. For each document, all the individual word vectors are
computed, and their mean calculated. With this, we lose infor-
mation such as word ordering, but the mean still provides us
with a good representation of the topic of the document.

18

5. COMBINING AVERAGE WORD VECTORS WITH BM25

5.1 Computational Complexity

The computation of the average is linear with the total amount
of words in the document, per document. This however is pre-
computed once, so at search time the only thing that needs to
be computed is the average of the words in the query, which
should be small.

With:

• W : the total amount of words in the longest document.

• D: the total amount of documents in the index.

• w: the total amount of words in the query.

• L: the length of the word vectors.

• V : the amount of distinct words in the vocabulary.

Preprocessing complexity:

• Embedding preprocessing time: O(L×W ×D). Per word
per document, the word’s vector has to be added to the
average. This does not account the time that it takes to
load the embeddings.

• BM25 preprocessing time: O(W × D). Every word in ev-
ery document has to be parsed once, and then to put the
BM25 scores again. A third time to pass it into the vec-
tor space model. Note that even if the complexity is lower,
this has a bigger constant and is slower than the embedding
preprocessing time.

19

5. COMBINING AVERAGE WORD VECTORS WITH BM25

Retrieval processing complexity:

• Query processing time: O(L×w). This can be assumed as
a constant because w <<< D.

• Embedding processing time: O(L×D). The distance com-
putation takes L time, per document.

• BM25 processing time: O(V × D). A dot product is re-
quired for this with the vocabulary matrix.

5.2 Average Word Vectors

Documents can be represented as clusters of words (fig[4]), their
topic being the centroid. By computing the mean, we get the
topic of the document. Queries can be represented in a similar
way. This way, the problem of words in queries being more
elusive, with broader meaning, is circumvented since that would
mean that the variance of the cluster that the query would form
would be bigger, while the centroids would remain in similar
values.

This means that we aren’t missing that much information
when comparing query means with document means. Ideally,
we would use cosine distance to compute the similarities, but to
make use of the vector space model, euclidean distance has been
used.

20

5. COMBINING AVERAGE WORD VECTORS WITH BM25

Figure 5: Illustration on how a local search optimization with a learning rate
of l is performed on a given function

5.3 Optimization

The initial values that were used for BM25 were 1.75 for k and
0.7 for b. This was decided as the baseline, and an improvement
was found when combining the normalized score of it with the
normalized score of average word vectors.

From there, a local search was applied to improve the results
even a bit, as shown in figure [5]. To automatize it, a learning
rate was manually defined per variable, which is dependant on
the space of the values. The result was monitored to change the
learning rate in accordance of the progress.

21

5. COMBINING AVERAGE WORD VECTORS WITH BM25

Two separate optimizations were done. The first one maxi-
mized the MAP of the second dataset and the second one the
overall score (best of three of MAP, MP@3 and MP@R) of both
datasets, taking turns per run. Maximizing for a single dataset
is bound to overfit, and that is the reason the second optimiza-
tion was performed, but it is still interesting to see the optimized
hyper-parameters of each dataset.

• Results of the MAP optimization on DB2: k=1.4 b=0.6822
alpha=0.6695

• Results of the overall optimization on both DBs: k=6.987
b=0.3199 alpha=0.4396

22

6. EVALUATION

6 Evaluation

A thorough evaluation was conducted in the system. For the
doc2vec approach, a language model was trained over 1

100 of the
full corpus. Doc2vec is very punishing to the usage in ram.
Training the model with this slice of the full corpus took 1 hour
and filled 16 GB of ram, alongside with 8 GB of swap. It clearly
isn’t feasible doing it with the full corpus. As an alternative
method, memory mapping was attempted.

With memory mapping, the system uses a file on disk as if it
were part of the ram. This way, when the processor needs part
of it, it will fetch it from the disk. However, this also means that
the I/O process will be way slower and it will take much longer
to finish the same process. The same slice was trained using
memory mapping, and it took almost a full day of computation.
Thus, using the full corpus to train the model was labelled as
infeasible, since the building of the model is worse than linear
for the size of the corpus, and in the best case, it would take
100 times longer to complete the computation.

Besides that, all the other processing was done using Google’s
pre-trained word vectors.

23

6. EVALUATION

6.1 Results

The metric that was mainly used for evaluation and optimiza-
tion was MAP, although MP@3 and MP@R were looked too.
This was computed for both evaluation databases. Here are the
results for all the methods that were not slow enough to bench-
mark, that is, all but WMD. The boosting method of adding
synonims is not in the results either, as it was clear that it
lowered all of the three scores. The chosen hybrid had also its
hyper-parameters optimized for the second database, and both
databases at the same time. The rounding has been done at
10−4 for visibility.

24

6. EVALUATION

Table 1: 1st database

Method Hyper-parameters MP@3 MP@R MAP

Base mixed & mean
vectors (base)

k=1.75 b=0.7
alpha=0.67

0.4265 0.2210 0.1850

Base BM25 k=1.75 b=0.7 0.4194 0.2375 0.2095

Base mixed & mean
vectors (mixed-opt)

k=6.987
b=0.3199
alpha=0.4396

0.4121 0.2326 0.1904

Doc2vec mixed & base
k=1.75 b=0.7
alpha=0.67

0.4194 0.2375 0.2095

BM25 with WMD
reorder

k=1.75 b=0.7 0.2115 0.1940 0.1543

Table 2: 2nd database

Method Hyper-parameters MP@3 MP@R MAP

Base mixed & mean
vectors (db2-opt)

k=1.4 b=0.6822
alpha=0.6695

0.5667 0.3639 0.3641

Base mixed & mean
vectors (base)

k=1.75 b=0.7
alpha=0.67

0.5 0.2881 0.3162

Base BM25 k=1.75 b=0.7 0.4333 0.2869 0.3092

Base mixed & mean
vectors (mixed-opt)

k=6.987
b=0.3199
alpha=0.5

0.5 0.3105 0.2964

Doc2vec mixed & base
k=1.75 b=0.7
alpha=0.67

0.4333 0.2869 0.3072

BM25 with WMD
reorder

k=1.75 b=0.7 0.3333 0.2423 0.2914

25

6. EVALUATION

As we can see in table 2, there is an improvement of 2.48% in
the MAP from the BM25 to the unoptimized hybrid. Further-
more, another 4.79% of increase has been had with the optimized
version. The combined optimization shows that the base that
we picked was already overfitting for the first database, as the
MAP is lower than with the unoptimized hyper-parameters.

The two methods that are shown besides the mean hybrid,
are the doc2vec hybrid and the WMD reordering. The doc2vec
hybrid had really bad results, and mixing it with the base query
yields either no change, or a minimal decrease in the final scores.
The reordering method did more harm that help, as it seems
that although it didn’t modify the MAP heavily, the MP@3 and
MP@R were lowered. It seems to lower the positions of the
relevant documents in the ranking.

6.2 Error in the normalization that mixes the methods

Regarding the results in the first database, albeit lower, it helped
in uncovering an error in the system. The mixture method had
lower MAP than the base query, and after letting it optimize
for several rounds, it did not reach the results of the base query
(0.17%). This makes no sense, since if alpha was 1, the results
should be identical to those of the base method. After some
investigation, it turned out that the normalization done when
combining the rankings of both methods, modify the ordering
of the ranks.

Sadly, due to time limitations, I was not able to pinpoint
the exact problem. It might be a floating point precision er-
ror but it requires further investigation. However, after testing
alpha=1 in the second database, I discovered that the yielded
MAP was 0.2386%, which is much lower than the one that the
actual base method yields. I suspect that if this is solved, the
general improvement will increase.

26

7. CONCLUSION

7 Conclusion

Word embeddings are a very powerful mechanism that can be
used for mostly all word comparison problems. Although Query-
Document comparison brings problems they can be circumvented
to get positive results. This is a novel way to boost search results
that does not depend on extra information outside of the query
itself, and has potential to be improved further in the future.

7.1 Future Work

The work with doc2vec stands to be completed. They theoret-
ically have the potential to work, but the computational power
required to generate some quality ones for the held requirements
is their biggest handicap. Would that be overcomed, the re-
trieval processing effort is as low as the other techniques pro-
posed, so it could be used in practice to boost results.

Using simply the average is also not a very powerful tech-
nique, there is obviously more work to be done in the field, and
new techniques to be formed from the concept. The first paper
presented in the related work shows a interesting approach to
treat documents with more than a single topic that can be fur-
ther expanded, though time limitations didn’t allow to do so in
here.

27

8. ACKNOWLEDGEMENTS

8 Acknowledgements

I would like to thank Prof. Dr. Hannah Bast for allowing me to
work on this novel topic. I also want to thank the University of
Freiburg for offering me the opportunity to finish my bachelor
and write this work in there, it was really valuable.

I want to thank my home university too, Euskal Herriko Unib-
ertsitatea, for helping me in the course of my studies. All the
teachers whose lectures I had the pleasure to attend were a great
model to follow in my studies.

Finally, I want to thank my family for supporting my study
decisions. I know that it was not simple nor easy and their
support and encouragement has been invaluable for me.

28

9. REFERENCES

9 References

[1] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean
Efficient Estimation of Word Representations in Vector
Space. (2013) https://arxiv.org/pdf/1301.3781.pdf

[2] Quoc Le and Tomas Mikolov Distributed Representations of
Sentences and Documents. (2014) https://arxiv.org/pdf/
1405.4053v2.pdf

[3] Dwaipayan Roy, Debasis Ganguly, Mandar Mitra and Gareth
J.F. Jones Representing Documents and Queries as Sets of
Word Embedded Vectors for Information Retrieval. (2016)
https://arxiv.org/pdf/1606.07869.pdf

[4] Sun Kim, W. John Wilbur and Zhiyong Lu Bridging the
Gap: a Semantic Similarity Measure between Queries and
Documents. (2016) https://arxiv.org/pdf/1608.01972.

pdf

[5] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q.
Weinberger From Word Embeddings To Document Distances.
(2015) http://proceedings.mlr.press/v37/kusnerb15.

pdf

[6] Gensim ML library, doc2vec module https:

//radimrehurek.com/gensim/models/doc2vec.html#

gensim.models.doc2vec.Doc2Vec.infer_vector

[7] Ofir Pele, Michael Werman Fast and Robust Earth Movers
Distances. http://www.ariel.ac.il/sites/ofirpele/

FastEMD/code/

[8] Dataset from ”One Billion Word Language Modeling Bench-
mark”.
http://www.statmt.org/lm-benchmark/1-billion-word-
language-modeling...

29

https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1606.07869.pdf
https://arxiv.org/pdf/1608.01972.pdf
https://arxiv.org/pdf/1608.01972.pdf
http://proceedings.mlr.press/v37/kusnerb15.pdf
http://proceedings.mlr.press/v37/kusnerb15.pdf
https://radimrehurek.com/gensim/models/doc2vec.html#gensim.models.doc2vec.Doc2Vec.infer_vector
https://radimrehurek.com/gensim/models/doc2vec.html#gensim.models.doc2vec.Doc2Vec.infer_vector
https://radimrehurek.com/gensim/models/doc2vec.html#gensim.models.doc2vec.Doc2Vec.infer_vector
http://www.ariel.ac.il/sites/ofirpele/FastEMD/code/
http://www.ariel.ac.il/sites/ofirpele/FastEMD/code/
http://www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz
http://www.statmt.org/lm-benchmark/1-billion-word-language-modeling-benchmark-r13output.tar.gz

9. REFERENCES

[9] Google’s pre computed word2vec vectors https://drive.

google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/

edit?usp=sharing

[10] Link to the first dataset: NPL ir.dcs.gla.ac.uk/

resources/test_collections

[11] Link to the second dataset and the bench-
mark https://drive.google.com/drive/folders/

0B-K9ndbOVB1WSWVEWGlDbDR3LU0?usp=sharing

30

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
ir.dcs.gla.ac.uk/resources/test_collections
ir.dcs.gla.ac.uk/resources/test_collections
https://drive.google.com/drive/folders/0B-K9ndbOVB1WSWVEWGlDbDR3LU0?usp=sharing
https://drive.google.com/drive/folders/0B-K9ndbOVB1WSWVEWGlDbDR3LU0?usp=sharing

	Abstract
	Introduction
	Problem Description
	Motivation

	Related Work
	Representing Documents and Queries as Sets of Word Embedded Vectors for Information Retrieval
	Bridging the Gap: a Semantic Similarity Measure between Queries and Documents

	Algorithms of the engine
	Best Match 25
	Word Vectors
	Document vectors

	World Mover's Distance
	Datasets
	Training
	Validation

	Tried and failed techniques
	Document Vectors: Lack of power
	WMD: Working space problem
	Top ranking reorder

	Generate sinonyms

	Combining average word vectors with BM25
	Computational Complexity
	Average Word Vectors
	Optimization

	Evaluation
	Results
	Error in the normalization that mixes the methods

	Conclusion
	Future Work

	Acknowledgements
	References

