
Bachelor Thesis

Efficient Presentation of
GeoSPARQL-Results

Denis Veil

Examiner: Prof. Dr. Hannah Bast
Advisers: Patrick Brosi

University of Freiburg

Faculty of Engineering

Department of Computer Science

Chair for Algorithms and Data Structures

September 08th, 2021

Writing Period

08. 06. 2021 – 08. 09. 2021

Examiner

Prof. Dr. Hannah Bast

Advisers

Patrick Brosi

Declaration

I hereby declare that I am the sole author and composer of my thesis and that no

other sources or learning aids, other than those listed, have been used. Furthermore,

I declare that I have acknowledged the work of others by providing detailed references

of said work.

I hereby also declare that my thesis has not been prepared for another examination

or assignment, either wholly or excerpts thereof.

Malterdingen, 08.09.2021

Place, Date Signature

i

Abstract

QLever is a SPARQL engine, which can handle large datasets [1]. The engine should

now be expanded to include geo-functionalities. In doing so, QLever returns results

for certain queries that contain geometric data.

This thesis describes a web application that is able to send SPARQL queries to the

QLever engine via an API, then process large results and display these on a map.

The result size of a query can exceed several million. With each entry containing

potentially multiple data points the web browser struggles to render them at the

same time. The main challenge of the application is to handle even larger results

efficiently to deliver a user-friendly experience.

iii

Zusammenfassung

QLever ist eine SPARQL-Engine, die mit großen Datensätzen umgehen kann [1]. Die

Engine soll nun um Geo-Funktionalitäten erweitert werden. Dabei liefert QLever bei

bestimmten Abfragen Antworten zurück, die geometrische Daten beinhalten.

Diese Arbeit beschreibt eine Web-Applikation, die in der Lage ist SPARQL Abfragen

an die QLever -Engine via einer API zu schicken, dann große Ergebnisse zu verarbeiten

und diese auf einer Karte darzustellen.

Die Ergebnisgröße einer Abfrage kann dabei mehrere Millionen überschreiten. Da jeder

Eintrag potenziell mehrere Datenpunkte enthält, hat der Webbrowser Schwierigkeiten,

sie gleichzeitig darzustellen. Die größte Herausforderung der Anwendung besteht

darin, größere Ergebnisse effizient zu verarbeiten, um ein benutzerfreundliches Erlebnis

bieten zu können.

v

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Motivation . 2

2 Related Work 3

2.1 Query Language . 3

2.2 Data Rendering . 3

3 Theoretical Analysis 5

3.1 SPARQL Query . 5

3.2 QLever Engine . 6

3.2.1 Well-known text . 6

3.2.2 API GET Request . 8

3.3 Clustering . 9

3.3.1 Centroid Initialization . 9

3.3.2 K-Means Clustering . 10

3.4 Web Application . 15

3.4.1 Leaflet . 15

3.4.2 Overview . 17

3.4.3 Map Navigation . 18

3.4.4 Flowchart . 19

vii

4 Empirical Analysis 23

4.1 Performance Test . 23

4.2 User Experience . 24

5 Future Work 27

Bibliography 30

viii

List of Figures

1 MultiPolygon Example . 7

2 Scheme of a Partially Loaded Map 19

3 Scheme of a Map Loading New Area 1/2 20

4 Scheme of a Map Loading New Area 2/2 21

5 Web Application . 22

ix

List of Tables

1 Comparison of Loading and Render Times 25

xi

List of Algorithms

1 Naive Sharding . 11

2 K-Means Clustering . 13

3 Helper Methods: Assign Labels and Calculate new Centroids 14

xiii

1 Introduction

QLever is a SPARQL engine for efficient combined search on a knowledge base and text

corpus [1]. Currently, the engine is being fed with datasets, inter alia, generated with

OpenStreetMap (OSM) and is now being extended with geo-funcionalities. Certain

SPARQL queries return a response with geometric data. This data can contain for

example places, streets or buildings in the form of geometric primitives as points,

linestrings or polygons, respectively (see Chapter 3).

The size difference in the results of the queries can be enormous. For example,

the query for all buildings in Freiburg (Listing 3.1) returns only 298 objects. In

comparison, the query for all residential highways (Listing 4.1) returns 57.992.788

objects. We also have to consider that with each entry containing potentially multiple

data points the web browser struggles to render them at the same time.

To display this data the engine needs a web frontend that can handle this geometric

data efficiently.

1.1 Problem

While it is not a big challenge for modern browsers to handle a few hundred data

points, the result size of some queries can reach a mark in the hundreds of thousands

or millions. Despite that a point or, respectively, a coordinate takes only about

20 Bytes, a linestring can contain multiple points and a polygon multiple linestrings

1

or even polygons itself. These are being called multipolygons. Therefore the task for

browsers to display this geometric data can grow very large and depending on the

shape types non-linear.

1.2 Motivation

The focus of this thesis is to develop a powerful web frontend application as an

extension to the QLever engine for displaying a query result without sacrificing the

user experience in terms of loading times or slowdowns.

To approach the large amounts of data we used the open-source JavaScript library

Leaflet for mapping [2]. The web application is able to read a SPARQL query and

obtain the query result over a GET request. The subsequent process decides then

based on the extent of the data how to deal with the result. If the extent is too large,

the query gets in the first step a filter option to limit the visible geometric shapes.

Then the result is being clustered and finally add to the map. Afterwards, only the

explored map or place of interest is being loaded in the background.

2

2 Related Work

2.1 Query Language

SPARQL, short for SPARQL Protocol And RDF Query Language [3], is a query

language and protocol for retrieving RDF data [4]. The RDF model is represented as

a directed graph which contains triples. A triple is an expression which consists of a

subject node, predicate and an object node. QLever represents its knowledge base

data also as graphs. Axel Lehmann describes in his thesis his approach to generate

such RDF triples from OSM data to fill the knowledge base of QLever [5].

2.2 Data Rendering

The open source project Datashader is a graphics pipeline and is designed to work

with large datasets [6]. It is written in Python but compiled to machine code to plot

even millions of data points efficiently on a map. While this approach might be more

suitable for data analysis, plotting map data on a canvas are a disadvantage for this

project.

For Leaflet itself, there is a plugin for clustering called Leaflet.markercluster [7]. It is

a powerful tool with lots of features for clustering. For smaller data sets (< 100.000)

it is more than sufficient in terms of the user experience. Unfortunately, with larger

3

data sets the initial loading times and the time for clustering becomes too long (see

Chapter 4).

Therefore, we approached the problem with a filter function on the QLever side and

with our own customized clustering algorithm on the web frontend.

4

3 Theoretical Analysis

In this chapter, we will give an overview of the functionalities of the web application,

the backend and the used algorithms. The application depends heavily on the QLever

engine. Therefore, we will first introduce the query language used in the engine

(Section 3.1) and the backend itself (Section 3.2). We describe in Section 3.3 our

implemented clustering algorithm and how it differs from the common k-means

algorithm. In Section 3.4, we introduce the web frontend which consists of multiple

parts: first we will describe the JavaScript library for mapping Leaflet in Section 3.4.1.

Then we will introduce all used data structures (Section 3.4.2) and the map controls

(Section 3.4.3). In Section 3.4.4, we show a complete overview of our web application.

3.1 SPARQL Query

SPARQL is a query language specifically designed to meet the use cases of RDF [3].

Listing 3.1 shows an example of a SPARQL query. This query describes in the PREFIX

the first three namespaces osmkey, geo and osm. Then the SELECT part follows

where it searches for an osm_id and geometry field. In the WHERE condition the RDF

relations are specified that the osm_id should have an geometry field and the building

type university. Lastly, it is being narrowed down with the FILTER function and

the envelope key so that the objects should be contained by the rectangle defined

with the LINESTRING.

5

Listing 3.1: SPARQL query: All university buildings in the bounding box of
Freiburg

PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX osm: <https://www.openstreetmap.org/>

SELECT ?osm_id ?geometry WHERE {

?osm_id osmkey:building "university" .

?osm_id geo:hasGeometry ?geometry .

?osm_id osm:envelope ?envelope .

FILTER contained(?envelope, "LINESTRING(7.662006 47.903578, 7.930844

48.071058)")

}

3.2 QLever Engine

QLever is a query engine for efficient combined search on a knowledge base [1]. The

knowledge base is filled with RDF triples, for example with the subject actor, the

predicate movie type and object movie name. To ensure efficient query operations

the triples are sorted in all possible ways. The database of the engine is being filled

with geometric data from OpenStreetMap. To access this data, the engine is using

the query language SPARQL.

3.2.1 Well-known text

The well-known text (WKT) format was defined to represent a standard for spatial

data by the Open Geospatial Consortium [8]. To present geometric data QLever uses

only four strings:

6

0 1 2 3 4 5

1

2

3

4

5

Figure 1: MultiPolygon example where the red triangle is being removed. WKT lit-
eral: MULTIPOLYGON(((1 1, 3 1, 4 2, 2 4, 0.5 2.5), (1.5 1.5, 3
2, 2 3)), ((4 3, 4.5 4.5, 3 4)))

1. The simplest spatial form is the point. The WKT representation of the point is

POINT(x0 y0) with x0 and y0 as coordinates.

2. A path is just a series of points and will be represented as WKT literal

LINESTRING(x0 y0, x1 y1, ..., xn yn). The points in the path are sep-

arated by the comma.

3. A two-dimensional shape will be represented as a polygon. The WKT literal

is POLYGON((x0 y0, x1 y1, ..., xn yn), (a0 b0, ...)). The first inner

parenthesis with the x and y coordinates describe the area of this polygon. The

second optional inner parenthesis with the a and b coordinates describe an area

which will be removed from the first one.

4. The multipolygon is the most complex shape in this collection. The WKT lit-

eral MULTIPOLYGON(((x0 y0, ..., xn yn), (a0 b0, ...)), ((...))) rep-

resents such a shape. It can add multiple polygons together and remove parts

respectively (Figure 1).

7

3.2.2 API GET Request

Listing 3.2 shows the corresponding response from an API GET request to the

SPARQL query in Listing 3.1. The response consists of multiple parts from which

the most important are:

1. ‘query’: The SPARQL query of this request.

2. ‘res’: An array of OSM data. In this example the URL to the relation of the

OSM ID and a geometric shape described by coordinates as a WKT literal.

3. ‘resultsize’: The length of the res-array.

4. ‘selected’: The column names of the res-array.

Listing 3.2: JSON result of the API call: All university buildings in the bounding
box of Freiburg

{

"query": "...",

"res": [

[

"<https :// www.openstreetmap.org/relation /12450227 >",

"\"MULTIPOLYGON (((7.8472071 47.9936843, ...)) ,((7.8476325

47.9943113, ...)))\"^^<http :// www.opengis.net/ont/

geosparql#wktLiteral >"

],

...

[

"<https :// www.openstreetmap.org/way /101163690 >",

"\"LINESTRING(7.8445060 47.9936810, ...)\"^^<http :// www.

opengis.net/ont/geosparql#wktLiteral >"

],

...

],

8

"resultsize": 298,

"runtimeInformation": { ... },

"selected": [

"?osm_id",

"?geometry"

],

...

}

3.3 Clustering

In this section, we will describe the clustering algorithm that is being used for the

web application. Based on the k-means clustering described by J. MacQueen [9], we

customized the algorithm for the specific task.

The algorithm has two phases. In the first phase, we describe how the initial centroids

are being chosen (Section 3.3.1). In the second phase, we describe our implementation

of the k-means clustering algorithm (Section 3.3.2).

3.3.1 Centroid Initialization

The first step is to choose the initial centroids before clustering. If the centroids are

randomly chosen, it is possible that the clustering algorithm needs more iterations to

converge.

Here, our focus is not data analysis but the overall user experience and loading times,

so it is not important to reach the best possible solution. Therefore, we choose the

initial centroids in linear time with the ‘Naïve Sharding’ method [10]. The sharding

algorithm depends on a summation of attributes of all instances. Then these sums

have to be sorted before the mean calculation of each attribute can take place. We

9

customized and simplified this method for coordinates in Algorithm 1, to be as close

as possible to the optimal solution but in a limited time.

We divide first the length of the input array by the number of clusters k to split the

dataset into k equal-sized slices:

size =
⌊ |coordinateArray|

k

⌋
Then for each slice of the coordinate array, we calculate the mean coordinate and

add them to the initial centroid array.

3.3.2 K-Means Clustering

The basic idea of the k-means clustering algorithm is to pick a set of initial centroids

and a number k for the amount of these centroids respectively clusters. Then to find

a local optimum of the residual sum of squares, we need to alternate between the two

steps [11]:

(A) Assign each element to its nearest centroid.

(B) Compute new centroids as average of the elements assigned to it.

We cannot predict what the size of every dataset will be. Choosing a k before knowing

the size could lead to too many or too few clusters. Therefore, we decided to calculate

a dynamic value for k in Algorithm 2 depending on the size a of given dataset:

k =
⌊
log2

(
|coordinatearray|

)⌋
For clarity purposes, the coordinateArray in this algorithm contains only the center

of each object which are pre-computed. The objects themselves are attached to the

center points but are not present in Algorithm 2 and in Algorithm 3.

10

Algorithm 1 Naive Sharding
function getCentroids(coordinateArray, k)

step← blength(coordinateArray)/kc . Step length
centroids← [] . Initialize the centroids
foreach i ∈ {0 . . . k} do . Make equal slices of the array

start← step ∗ i
end← step ∗ (i+ 1)
if i+ 1 = k then . End of the last slice

end← length(coordinateArray)
end if
mean← getMean(coordinateArray, start, end)
centroids[i]← mean . Put the mean value into the

centroid array
end for
return centroids

end function

function getMean(coordinateArray, start, end)
step← end− start
mean← [0, 0]
foreach i ∈ {start . . . end} do . Iterate over the slice and cal-

culate the mean coordinate
mean[0]← mean[0] + coordinateArray[i][0]/step
mean[1]← mean[1] + coordinateArray[i][1]/step

end for
return mean

end function

11

Furthermore, we define two global variables for maximum iterations maxIteration and

maximum amount of objects per cluster maxVal before the cluster will be divided

in subclusters. The maxIteration value is one of two termination conditions of the

clustering algorithm. For data analysis this value would be higher but here it is

intentionally low. This ensures a limited computation time for the clusters to balance

the presentation time and quality. The other termination condition is the convergence

of centroids (see Algorithm 2).

After the initialization of the centroids in Section 3.3.1, the center points are being

assigned in Algorithm 3 to its nearest centroid. To calculate the distance between a

object-center and a centroid we use the Euclidean Distance:

distance(x, y) =
√
(x[0]− y[0])2 + (x[1] + y[1])2

After the assignment of each center to its centroid, the clusters will be reviewed.

In Algorithm 3 we compute for all center point per cluster a new centroid. If a

centroid has no center points it will be discarded. This loop continues until one of

the termination conditions is being met.

Afterwards, we review once again the final clusters. If one cluster contains more

objects than maxVal, the clustering algorithm will run recursively on its objects to

generate subclusters.

The reason for the addition of building subclusters is purely for the purpose of

presentation of the objects. The user experience can get laggy when too many objects

are being held in the background. With the objects assigned to clusters we can

dynamically load and unload clusters which are not visible on the screen as described

in the next Section 3.4.

12

Algorithm 2 K-Means Clustering
maxIteration = 4
maxV al = 5000
function kMeans(coordinateArray)

k ← blog2(length(coordinateArray))c . Dynamic calculation of k
clusters← [] . Initialize the clusters
terminate← false
iteration← 1
centroids← getCentroids(coordinateArray, k)
while terminate 6= true do

oldCentroids← centroids
centroidLabels = assignLabels(coordinateArray, centroids)
centroids← getNewCentroids(centroidLabels)
iteration← iteration+ 1
terminate← terminator(oldCentroids, centroids, iteration)

end while
foreach group ∈ centroidLabels do

if lenth(group.objects) ≥ maxV al then . If too many objects..
subcluster ← kMeans(group.objects) . ..cluster them again
group.subclusters← subcluster . Add the subcluster to the

cluster
end if
clusters.push(group) . Finally add the group to the

main cluster array.
end for
return clusters

end function

function terminator(oldCentroids, centroids, iteration)
if iteration ≥ maxIteration then

return true
end if
foreach i ∈ {0 . . . length(centroids)} do

if centroids[i] = oldCentroids[i] then
return true

end if
end for
return false

end function

13

Algorithm 3 Helper Methods: Assign Labels and Calculate new Centroids
function assignLabels(coordinateArray, centroids)

labels← { }
foreach i ∈ {0, . . . , length(centroids)} do . Initialize the labels

labels[i]← {points : [], centroid : centroids[i], subclusters : { }}
end for
foreach i ∈ {0, . . . , length(coordinateArray)} do

centerPoint← coordinateArray[i]
foreach j ∈ {0, . . . , length(centroids)} do

currentCentroid← centroids[i]
if j = 0 then

closest = currentCentroid
closestIndex = j
closestDistance = calculateDistance(centerPoint, closest)

else
newDistance = calculateDistance(centerPoint, closest)
if newDistance < closestDistance then

closest = currentCentroid
closestIndex = j
closestDistance = newDistance

end if
end if

end for
labels[closestIndex].points.push(centerPoint)

end for
return labels

end function

function getNewCentroids(centroidLabels)
newCentroidArray ← []
newCentroid← [0, 0]
foreach group ∈ centroidLabels do

newCentroid← getMeanPoints(group.points)
newCentroidArray.push(newCentroid)

end for
return newCentroidArray

end function

function getMeanPoints(points)
mean← [0, 0]
foreach i ∈ {0 . . . length(points)} do

mean[0]← mean[0] + points[i][0]/length(points)
mean[1]← mean[1] + points[i][1]/length(points)

end for
return mean

end function

14

3.4 Web Application

In this section, we describe the functionality of the complete web frontend. First, we

will give an introduction in the Leaflet library in Section 3.4.1. In Section 3.4.2, we

show how the data from the QLever engine is being processed and the associated

data structures. In Section 3.4.3, we describe the navigation on the map and how

data is being loaded in the background. Lastly, we give a complete overview of the

web application in Section 3.4.4.

3.4.1 Leaflet

There are a few libraries for mapping in JavaScript, for example OpenLayers or

Datamaps, but because of the simple design, lightweight and usabilty we chose Leaflet

as our foundation. Leaflet weighs just about 39 KB of JS (plus 4 KB in CSS) and

has many features and plugins to use [2].

Listing 3.3 shows how easy it is to initialize a map. The map needs only a DIV

container in the HTML file, a center and a zoom level. OpenStreetMap provides then

the tilelayer with map tiles for each zoom level. Each zoom level z contains 4z tiles

starting with 0 where the whole world is represented by one 256x256 pixel tile. On

zoom level 1 the world is divided by 4 256x256 pixel tiles and so on.

Adding shapes like markers or polygons and information popups to the map is just

as easy as Listing 3.4 shows.

15

Listing 3.3: Map Initialization

// Initialize the map in the "map" div with a center and zoom

level.

const map = L.map(’map’, {

center: [48.00443 , 7.83017] ,

zoom: 8,

});

// Tilelayer of the map provided by OpenStreetMap.

const tilelayer = L.tileLayer(

’https ://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png’, {

attribution: ’©␣<a␣href=" https :// www.openstreetmap.org/

copyright">OpenStreetMap ␣contributors ’,

}).addTo(map);

Listing 3.4: Adding objects to the map

// Creating a marker with coordinates and a popup.

const marker = L.marker ([48.00443 , 7.83017]);

marker.bindPopup (" Hello! I am a marker ");

marker.addTo(map);

// Creating a triangle polygon with coordinates and a popup.

const polygon = L.polygon ([

[47.993 , 7.847] , [47.983 , 7.847] , [47.993 , 7.857]

]);

polygon.bindPopup (" Hello! I am a polygon ");

polygon.addTo(map);

16

3.4.2 Overview

As described in Section 3.2.1 QLever stores and returns the geometric shapes in the

WKT format. Leaflet can only handle plain coordinates or a set as GeoJSON which

is a format for geospatial data that supports the mentioned shapes [12]. Therefore we

first need to translate the data from WKT format to GeoJSON with the help of the

Terraformer project by the Esri Portland R&D Center [13]. The Terraformer.WKT

package allows to transform the WKT literal into a GeoJSON objects with one line

(Listing 3.5).

Then we can create a feature object from this GeoJSON object. This feature contains

the type (point, linestring, polygon or multipolygon), the array with the coordinates

of the shape and information content for the popup.

Listing 3.5: Converting WKT literals into GeoJSON objects

// Convert the WKT literal with Transformer.WKT package into a

GeoJSON object.

const geoJSON = Terraformer.wktToGeoJSON(wktToParse);

// Create a feature with linked popup table and coordinates.

const feature = {

’type’: ’Feature ’,

’properties ’: {

’popupContent ’: createPopupTable (...),

},

’geometry ’: {

’type’: geoJSON.type ,

’coordinates ’: geoJSON.coordinates ,

},

};

17

3.4.3 Map Navigation

In Section 3.1, we indicated that QLever is able to load a subset of an area with a

contained function. We use this function when a query result exceeds a certain limit.

With this process we remember the initial zoom level for loading next areas so that

the limitation is not being exceeded on dragging the map. We choose first one of

the first objects in the result and zoom in on the map until the subset is below the

limit. Figure 2 shows a schematic of a loaded area. The blue area is the visible area

which is defined by the screen size of the browser. The red dashed area represents

the loaded not visible area. The size of each of the eight areas is also defined by the

screen size to ensure that the user does not have to wait for loading objects when he

drags the map a little bit.

Loading new data happens in two cases:

1. The first case is when the visible map (blue area) is being dragged to the edge

and one side hits the grey dotted area. The application generates then a new

query for the gray area (Figure 3) depending on the already loaded area. In

the course of this process the corner points are being stored to remember which

area is already being loaded. Figure 4 shows as an example which area will be

loaded in the next steps.

It is important to note that a new area is only being loaded when the zoom level

is not too low. The user interface will notify the user when the user zoomed

out of the limit.

2. The second case is on the double-click event of the map. When the user

zoomed out of the initial area it is possible to double-click on a coordinate. The

application sets then again the initial zoom level and the previous loaded area

is being discarded.

18

southwest

west

northwest north northeast

east

southeastsouth

visible map
on screen

Figure 2: Schematic presentation of the loaded area of the map

3.4.4 Flowchart

Figure 5 shows the flow chart of the complete web application and how the algorithms

and functions from the previous sections are implemented. First, the application

takes two URL parameter query and backend. The query is described in Section 3.1

and the backend is the API URL to the QLever engine (Listing 3.6).

Listing 3.6: Example of the backend API URL

https :// qlever.informatik.uni -freiburg.de/api/osm -planet

After encoding the query, we create a new query URL with a LIMIT clause. The

function loadTestQuery(url) sends then a GET request to the QLever engine to get

only the first few entries but with the result size of the whole query. The first object of

the JSON result defines the initial center of the screen in getFirstObject(result).

In the next step, the application decides based on the result size whether it exceeds

the maximum amount of objects to show (defined as MAX_OBJECTS = 12.000).

Case 1: If the current result size is larger than MAX_OBJECTS then the application

19

southwest

west

northwest north northeast

southeastsouth

visible map
on screen

new area

new area

new area

Figure 3: Schematic presentation of the loading new area of the map 1/2

zooms into the map by one level. readEnvelope() calculates then the new bounds

(red area in Figure 2) for the new envelope query. This will be repeated until the

result size of an envelope query is lower than MAX_OBJECTS. Then case 2 steps in.

Case 2: If the current (or total) result size is lower than MAX_OBJECTS, the last URL

is being loaded without the LIMIT cause. In the read(result) function all objects

are being converted from WKT literals into GeoJSON objects. These objects or

geometric shapes are then being clustered by kmeans(objects). Afterwards, each

visible cluster is represented by a rectangle which contains the center points of its

objects and a marker with the number of objects it holds.

When the objects are finally loaded, the map can then be navigated as described

in Section 3.4.3. Additionally, the user can then click on a cluster rectangle to let

the objects appear and right-click on it to disappear them again. Visible clusters

disappear if the map is being dragged away from them and vice versa.

20

visible map
on screen

new area new area new area new area

Figure 4: Schematic presentation of the loading new area of the map 2/2

21

index.html?query=[SPARQL][BACKEND]

loadTestQuery(url) createTestQuery(url)

QLever ServergetFirstObject(result)

Sets the map view
Calculate

envelope bounds

result size
(subset)

readEnvelope()

load(url)

read(result)

kmeans(objects)

show(clusters)

map.on(drag-end)

checkBounds()

Calculate
envelope bounds

If ≤ MAX_OBJECTS

map.on(double-click)

url = BACKEND + SPARQL

Send url + LIMIT 10

Result

If > MAX_OBJECTS
zoom in

Result

Parse result to objects

Calculate (sub-)clusters

If loaded objects
< result size
(complete)

If loaded objects
< result size
(complete)

Zoom in and
load new area

Figure 5: Flow Chart of the Web Application

22

4 Empirical Analysis

In this chapter we compare two aspects of the application. We compare the

loading times between our implementation, a baseline solution and the plugin

Leaflet.MarkerCluster (Section 4.1) and the overall user experience (Section 4.2).

All algorithms were written in JavaScript with the libraries jQuery and Leaflet. For

the metrics we used the browser Chromium Version 92.0.4515.131 (64-bit) on a

machine with Intel i5-8250U CPU @ 1.60GHz CPU and 24 GB RAM running on

Pop!_OS 20.10 (based on Ubuntu). The average download speed of the used Internet

connection was 57.49 Mbit/s.

4.1 Performance Test

For the performance test, we use the SPARQL query (Listing 4.1) which has a

total result size of 57.992.788. Although QLever is limiting the total results to a

maximum of 100.000 objects, we can already see the growing response and render

times in Table 1.

We modified the URL query with a LIMIT clause with 25.000, 50.000 and 75.000 to

see how response and render times would develop if QLever was sending more than

100.000 objects.

23

Our baseline solution is the most simple approach which is just loading all objects

into the map. This shows already representative for the next approaches that the

JSON result (memory usage) is growing more than linear compared to the number

of objects. This is due to the fact that an object like a polygon consists of multiple

points. The more complex the shape is the more space it takes. The solution with

the Leaflet.MarkerCluster plugin takes even a longer render time than the baseline.

With over 50.000 it takes already over 10 seconds for the initial load, which is not

responsive. Our own clustering-only solution is indeed faster because it is less complex

than Leaflet.MarkerCluster, but with over 75.000 objects in the JSON result the

algorithm exceeds 9 seconds. Finally, our filtering combined with our clustering

solution with the limitation of maximum 12.000 objects takes on average 946 ms

(response + render time) for 5537 objects.

Listing 4.1: SPARQL query: All residential highways

PREFIX osm: <https://www.openstreetmap.org/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX osmkey: <https://www.openstreetmap.org/wiki/Key:>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?osm_id ?hasgeometry WHERE {

?osm_id osmkey:highway "residential" .

?osm_id rdf:type osm:way .

?osm_id geo:hasGeometry ?hasgeometry .

}

4.2 User Experience

Apart from the initial loading times, the overall user experience is most crucial for a

web application. Despite that the baseline is faster in terms of rendering compared to

24

response time

(ms)

render time

(ms)
memory #objects

Baseline (simple loading) 1461.4 2132 9.5 MB 25000

2920.0 4727.9 19.7 MB 50000

4121.2 6426.6 28.4 MB 75000

5401.8 8107.3 35.7 MB 100000

Leaflet.MarkerCluster 1432.7 2798.7 9.5 MB 25000

2872.5 7654.0 19.7 MB 50000

4134.2 14511.3 28.4 MB 75000

5465.2 26200.3 35.7 MB 100000

Cluster only 1480.3 1816.5 9.5 MB 25000

(own implementation) 2884.1 3600.2 19.7 MB 50000

4103.5 5170.1 28.4 MB 75000

5417.5 6971.3 35.7 MB 100000

Filter + Cluster 196.8 206.1 302 kB 950

(own implementation) 289.1 293.0 861 kB 2786

743.6 601.3 2.4 MB 7983

692.4 414.7 2.4 MB 7983

706.0 589.9 2.4 MB 7983

Table 1: Comparison of loading and render times

Leaflet.MarkerCluster, the navigation of the map starts to feel sluggish and laggy even

with < 25.000 objects. The experience with Leaflet.MarkerCluster is the complete

opposite. The plugin is very sophisticated and while the navigation is very good, the

loading times are not. The cause is that it generates many clusters within clusters

which results in longer render times the more objects are being loaded. Our final

implementation delivers fast results in the shortest amount of time. The downside is

that the user becomes attentive of the limited loaded objects when he zooms out.

25

5 Future Work

In this thesis, we have presented our implementation of efficiently rendering geospatial

data on a map. Our main focus was to limit the maximum amount of objects being

loaded at one time and cluster them.

The following points describe potential ways to enhance the usability and the response

times:

1. The clustering function can be improved by adjusting the cluster shape. Instead

of a simple rectangle it could get an approximate shape of all contained shapes.

2. The geospatial data in the QLever engine can be extended by adding and/or

pre-computing more information:

(i) The center point of the shape for the clustering algorithm.

(ii) Which tile (for one of the higher zoom levels) contains this center point.

This could result in better clusters without sacrificing computing time on

the users end.

3. Pre-compute the clusters and send only the parent clusters to the user. Only

after clicking on a subcluster the client sends a GET request for current visible

screen.

27

The first solution is the easiest one, but it only delivers a better look and feel of

the map. With solution 2, especially 2(ii), we could first send a query on the tile

information and would get the complete geographical extent without limit.

28

Bibliography

[1] H. Bast and B. Buchhold, “Qlever: A query engine for efficient sparql+text

search,” pp. 647–656, Proceedings of the 27th ACM International Conference on

Information and Knowledge Management, 11 2017.

[2] V. Agafonkin, “Leaflet.” https://github.com/Leaflet/Leaflet, 2020. [Online;

accessed 31-August-2021].

[3] S. Harris and A. Seaborne, “Sparql 1.1 query language.” https://www.w3.org/

TR/2013/REC-sparql11-query-20130321/, 2013. [Online; accessed 31-August-

2021].

[4] D. Beckett, “Rdf/xml syntax specification.” https://www.w3.org/TR/

REC-rdf-syntax/, 2004. [Online; accessed 06-September-2021].

[5] A. Lehmann, “Creating a rdf knowledgebase from openstreetmap data,” Master’s

thesis, Albert Ludwig University of Freiburg, 5 2021.

[6] I. Anaconda, “Datashader.” https://datashader.org/. [Online; accessed 06-

September-2021].

[7] D. Leaver, “Leaflet.markercluster.” https://github.com/Leaflet/Leaflet.

markercluster, 2018. [Online; accessed 31-August-2021].

29

https://github.com/Leaflet/Leaflet
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/REC-rdf-syntax/
https://www.w3.org/TR/REC-rdf-syntax/
https://datashader.org/
https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster

[8] R. Lott, “Geographic information - well-known text representation of coor-

dinate reference systems.” http://docs.opengeospatial.org/is/12-063r5/

12-063r5.html, 2015. [Online; accessed 31-August-2021].

[9] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” p. 281–297, Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, 1 1967.

[10] M. Mayo, “Toward increased k-means clustering efficiency with the naive

sharding centroid initialization method.” https://www.kdnuggets.com/2017/

03/naive-sharding-centroid-initialization-method.html, 2017. [Online;

accessed 31-August-2021].

[11] H. Bast, “Lecture notes in information retrieval,” December 2018.

[12] H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub, and T. Schaub, “The

GeoJSON Format.” RFC 7946, Aug. 2016.

[13] E. P. R. Center, “Terraformer.” https://terraformer-js.github.io/. [Online;

accessed 31-August-2021].

30

http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
https://www.kdnuggets.com/2017/03/naive-sharding-centroid-initialization-method.html
https://www.kdnuggets.com/2017/03/naive-sharding-centroid-initialization-method.html
https://terraformer-js.github.io/

	1 Introduction
	1.1 Problem
	1.2 Motivation

	2 Related Work
	2.1 Query Language
	2.2 Data Rendering

	3 Theoretical Analysis
	3.1 SPARQL Query
	3.2 QLever Engine
	3.2.1 Well-known text
	3.2.2 API GET Request

	3.3 Clustering
	3.3.1 Centroid Initialization
	3.3.2 K-Means Clustering

	3.4 Web Application
	3.4.1 Leaflet
	3.4.2 Overview
	3.4.3 Map Navigation
	3.4.4 Flowchart

	4 Empirical Analysis
	4.1 Performance Test
	4.2 User Experience

	5 Future Work
	Bibliography

