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Abstract

The goal of this work is to implement a context tracking functionality in the Aqqu

question answering system and to study the influence of context tracking on the

overall performance of Aqqu. A question answering system with context tracking

functionality takes the context into account. To find the correct answer, the system

not only processes the current question, but also the history of questions asked

before.

To implement context tracking for Aqqu, we developped a web user interface (UI) in the

form of a chatbot. Additionally we added to it a data augmentation functionality. We

call the Aqqu system with a context tracking functionality conversational Aqqu. We

evaluated the conversational version of Aqqu against a newly created conversational

version of the original WebQSP questions dataset. For this we transformed and

reordered the original one-off questions into conversations about topic entities shared

by the original questions.

From the evaluation results it was apparent that the conversational question answering

is slightly less accurate, when compared to a single-question answering. Yet taking

into account, that it is a far more complicated task, the conversational system still

showed a very good performance. Moreover context tracking brings more convenience

into the question answering process.
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Zusammenfassung

Das Ziel dieser Arbeit ist eine Kontextverfolgungsfunktion im Aqqu- Fragebeant-

wortungssystem zu implementieren und den Einfluss der Kontextverfolgung auf die

Gesamtleistung von Aqqu zu untersuchen. Ein Fragebeantwortungssystem mit Kon-

textverfolgungsfunktion berücksichtigt den Kontext. Um die richtige Antwort zu

finden, verarbeitet das System nicht nur die eine gestellte Frage, sondern auch den

Verlauf der zuvor gestellten Fragen.

Um das Kontext-Tracking für Aqqu zu implementieren, haben wir eine Web- Benutzer-

oberfläche in Form eines Chatbots entwickelt. Es wurde eine zusätzliche Funktionalität

zur Datenerweiterung im Chatbot eingeführt. Wir nennen das Aqqu-System mit einer

Kontextverfolgungsfunktion Conversational Aqqu. Wir haben Conversational Aqqu

mit einer neu erstellten Konversationsversion des ursprünglichen WebQSP-Fragen-

Datasets verglichen. Zu diesem Zweck haben wir die ursprünglichen Einzelfragen in

Konversationen umgewandelt und nach Themeneinheiten neu angeordnet.

Aus den Bewertungsergebnissen ging hervor, dass die Beantwortung von Konversa-

tionsfragen im Vergleich zur Beantwortung von Einzelfragen weniger genau ist. Unter

Berücksichtigung der Tatsache, dass es sich um eine weitaus kompliziertere Aufgabe

handelt, zeigte das Conversational Aqqu dennoch eine sehr gute Leistung. Darüber

hinaus erleichtert das Kontext-Tracking die Beantwortung von Fragen.
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1 Introduction

Question answering (QA) is a complex task that lies within the fields of information

retrieval and natural language processing. Its objective is to build systems that

automatically answer questions posed in a natural language. QA systems usually query

knowledge bases, where the data is organized into relatively simple structures. However

natural language structures have a high variability and ambiguity, and translating

them into a structured knowledge base query is a challenging task. Furthermore

context is very important in natural language, as the same sentence can have different

meanings in different dialogues.

In this project, we focused on analyzing the influence of context on the question

answering process, using the system Aqqu [1]. By context we mean the immediate

history of previous questions and answers.

The original Aqqu processes questions independently from each other and gives

isolated answers. The system does not ‘remember’ the sequence of questions and

does not take notice of the order in which the questions are asked.

However, context is very important in real life. One question is often followed by

additional or clarifying questions. A QA system that can track the context and follow

a conversation should be more intuitive and convenient to use and may give more

reasonable answers.
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As an example, let us look at the following dialogue of a user with Aqqu, without

taking context into account:

User: Who is Bach?

AqquBot: Johann Sebastian Bach, profession: Composer, Musician, Harpsi-

chordist, Teacher, Violinist, Organist, Violist, Cantor

User: Who was he married to?

AqquBot: World Health Organization, founders: Brock Chisholm

Obviously the reply that the user gets is not what is expected. The system does

not handle the ellipsis phenomena in the conversation. To answer all the questions

correctly the system requires the information from the conversation history. The

ellipsis of the entity he refers to Johann Sebastian Bach, but the system does not

recognize that. It considers the entity Who to be an abbreviation of World Health

Organization and gives the best possible answer for this entity.

In the next example we see a more human-like conversation, produced by the conver-

sational Aqqu system, that has been developed within this project:

User: Who is Bach?

AqquBot: Johann Sebastian Bach, profession: Composer, Musician, Harpsi-

chordist, Teacher, Violinist, Organist, Violist, Cantor

User: Who was he married to?

AqquBot: Johann Sebastian Bach, spouse: Anna Magdalena Bach, Maria

Barbara Bach

User: Where was she born?

AqquBot: Anna Magdalena Bach, place of birth: Zeitz

User: Where is it?

AqquBot: Zeitz, containedby: Germany, Saxony-Anhalt

The system understands who is meant by he, she and it, when the user substitutes

the noun with a pronoun. This is a more natural way to hold a dialogue.
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To make the question answering process more human-like, a simple context tracking

functionality was integrated in Aqqu. The explanations of the main approach of

context tracking can be found in section 3 – Context Tracking. A short overview

of the Conversational Aqqu application is presented in section 4 – Aqqu Chatbot.

An important part of the project was to analyze how will the performance of the

Aqqu system change after integrating context tracking. For this purpose the WebQSP

dataset was restructured into different conversational datasets (section 5 – Evaluation

Dataset). In these datasets the questions were sorted by entities and reorganized

into conversations. Then the system was trained and evaluated using these datasets

(Section 6 and 7 – Evaluation and Experiments). The influence of context tracking is

analyzed using the evaluation results in section 8 – Conclusion.
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2 Related Work

In this section the current work within the field of Conversational Question Answering

is analyzed and compared to the context tracking approach that was implemented in

this thesis.

There are several QA datasets, that have a conversational structure. The CoQA

dataset [2] contains 127k questions in 8k conversations, each question has an answer

and a rationale that supports the answer. The QuAC dataset [3] contains 100k

questions in 14k crowdsourced QA dialogs. The answers in the dataset are provided

in the form of a text span and the data is collected from Wikipedia texts. The

QBLink dataset [4] has about 18k question sequences and each sequence consists of

three questions. In these datasets the learning models need to take into account the

whole conversation and not just separate questions and answers. Existing approaches

to accomplish the conversational QA use a question and a conversation history as an

input to produce a correct answer. In these approaches questions are answered on

unstructured text data, while Aqqu searches the answers in a structured knowledge

base.

In the method that is presented in [5] the system learns from conversational datasets.

The model has an additional multi-layer recurrent neural network to capture contextual

information from a conversation. For this approach the CoQA dataset was used.

The method achieves very good results, but it is only applied to in-domain training
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and evaluation, and it is not clear how it performs on open-domain with knowledge

base.

The Dialog-to-Action approach is described in paper [6]. The authors map conver-

sational natural language questions to a logical form representation and implement

a dialog memory management to track the interaction history. The dialog memory

management component maintains three types of information: entities, predicates

and action sub-sequences. The actions are used to generate logical forms. Each action

consists of a semantic category, a function symbol, and a list of arguments. The

logical form of the question is created using the conversation history. The questions

are answered using a large-scale knowledge base. In the training each question is

paired with the correct answer and not paired with the correct logical form. The

experiments are conducted with the CSQA dataset [10]. The dataset is based on

Wikidata [11] and includes 152K dialogs for training and 16K/28K dialogs for evalua-

tion and testing. The method that is introduced in this thesis is simpler and tracks

the history of identified entities without taking into account the predicates and action

sub-sequences.

In this work the questions from the WebQSP dataset were restructured into conver-

sations, where each conversation shares one entity. The WebQSP_conversational

dataset contains 5k questions in 2281 dialogs. Context tracking for Aqqu is imple-

mented by tracking the history of previous questions and storing previously identified

entities from questions and answers. The system does not change the learning model,

it extends the set of processing entities and makes the system choose from the entities

from both the current and the previous questions. The conversational Aqqu was

trained and evaluated with conversational data.
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3 Aqqu

3.1 How Aqqu Question Answering Works

Aqqu is a question answering system. It was developed at the Chair for Algorithms

and Data Structures from the Department of Computer Science, University of Freiburg

by Prof. Dr. Hannah Bast, Elmar Haussmann and Niklas Schnelle [1]. Aqqu is

available online and via Telegramm. The system is built on Freebase, but it can be

adjusted to any knowledge base. To better understand the approach that has been

applied in this project, let us look at how the Aqqu system chooses an answers to

a questions from Freebase. Freebase is a data base, containing a very large amount

of information. The information can be queried with the SPARQL language. A

SPARQL query consists of entities and relations. Aqqu extracts the possible entities

and relations from a natural-language query and creates possible matching SPARQL

queries. For example for the question "who is the ceo of apple" the SPARQL query

is [1]:

select ?name where {

Managing_Director job_title.people_with_this_title ?0 .

?0 employment_tenure.company AppleInc .

?0 employment_tenure.person ?name

}
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With the SPARQL queries the answer candidates are extracted from the knowledge

base. Then the system prunes and sorts the candidates and gives a list of sorted

answers as the output. For each question the system goes through the following

steps:

• Entity Matching. The system splits the question into subsequences and

then looks for matching entities or matching entity aliases (from CrossWikis

[7]) in the knowledge base. Then a score for each match is computed using

the likelihood of the entity to be an alias of the subsequence. Also a match-

independent popularity score is computed for each entity. The popularity score

is the number of times the entity is mentioned in the ClueWeb12 dataset [8],

according to the annotations provided by Google [9].

• Candidate Generation. For each entity the system searches for matching

relations. Three types of templates are used. A template can consist of entity

placeholders e, relation placeholders r, an answer node t and an intermediate

object m:

– a simple template with a single entity and a single relation:

<e1><r1><t>

An example of the first template for "Who invented the smartphone?":

<smartphone(entity)><inventor(relation)><Apple Inc.(answer)>

– a template with one entity, two relations and a mediator object:

<e1><r1><m><r2><t>

An example of the second template for "What company did Steve Jobs

work for?"

<Steve Jobs(entity)><employment(relation)><mediator object>

<mediator object><company(relation)><Apple Inc.(answer)>
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– a template with two entities, two relations and one mediator object:

<e1><r1><m>

<m><r2><e2>

<m><r3><t>

An example of the third template for "What device did Steve Jobs invent

for Apple Inc.?"

<Steve Jobs(entity)><employment(relation)><mediator object>

<mediator object><company(relation)><Apple Inc.(answer)>

<mediator object><invention(relation)><smartphone(answer)>

This is obtained via a single SPARQL query for each entity for each relation.

A matched template is a query candidate.

• Relation Matching. For each candidate from the set of query candidates,

the system computes how well the words from the relations match the words

from the question. The system considers four types of matches: literal match,

derivation match, synonym match and context match. A score for each match

is calculated according to the template type.

• Features Extraction. The features are extracted for the future candidate

pruning and ranking. There are 23 different features that Aqqu uses for learning

and evaluation: features, that are based on the entity matching results and

relation matching results, features that quantify the result size, the answer-type

feature and the n-gram relation matching feature. Also in the current version a

Deep Learning based mechanism for matching relations to the question is used.

It is based on a convolutional neural network, which is trained on the relation

template candidates to judge the similarity between the candidates and the
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question. The scores from the entity matching and the relation matching are

used to calculate these features, as well as parameters such as the number of

words in the question, the result size and the n-gram relation.

• Candidate Pruning. The candidate pruning can be done either without

n-grams (with hard pruning) or with n-grams (with a pruning classifier). We

used the second variant with n-grams. A pruning classifier is a logistic regression

classifier. The classifier is trained to discard ‘obviously’ bad candidates. The

pruning classifier works with the same 23 features as the ranking classifier. The

system returns “no answer” only when the set of candidates is empty.

• Candidate Ranking. Two types of ranking were investigated in the Aqqu

paper to rank the remaining candidates: pointwise ranking and pairwise ranking.

For a pointwise ranking a score is calculated for each candidate and the candi-

dates are sorted according to this score. In the pairwise ranking the ranking

problem is transformed to a binary classifier, where each candidate is compared

with all the other candidates. The system can be trained with either a linear

or a random forest classifier. For this work an Aqqu system with a pairwise

ranking and a random forest classifier variant was used. After the ranking all

the candidates are sorted according to their relevance.

3.2 Aqqu Usage

Aqqu can be used on a website with a convenient interface:

http://aqqu.informatik.uni-freiburg.de

On the website it is possible to either choose a question from a dataset or to type in

an arbitrary question. The request with the question is sent to a server after clicking

the Translate and Execute button. There can be several answers to the same question,

10
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and Aqqu returns several candidates. These candidates are ranked from the most

probable to the least probable candidate.

Another way to run Aqqu is by making a request in a browser in the following form:

http://aqqu.informatik.uni-freiburg.de/api?q=who%20played%20dory%20in%20finding%

20nemo

http://aqqu.informatik.uni-freiburg.de/api specifies the backend that is used
%20 URL encoding for space
?q=who played dory in finding nemo the executed query

The answer is displayed as JSON, that has the following structure:

{"candidates" :

[{"answers": [{" mid" : "m.019 xz9", "name": "Ulm"}, ...],

"entity_matchess": [{"mid" : "m.0jcx"}, ... ],

"features" : {" avg_em_popularity" : 14.04 , "

avg_em_surface_score" : 1, "cardinality" : 13, ... },

"matches_answer_type" : 1.9,

"pattern" : "ERT",

"rank_score" : null ,

"relation_matches" : [{" name" : "people.person.place_of_birth

", "token_positions" : [4]}, ... ]],

"root_node" : {"mid" : "m.0jcx"},

"out_relations" : [{" name" : "people.person.place_of_birth",

"target_node" : {"mid" : null , "out_relations" : []}},

... ],

"sparql" : "PREFIX fb: <http ://rdf.freebase.com/ns/>\n\

nSELECT DISTINCT ?0 WHERE {\n fb:m.0jcx fb:people.person.

place_of_birth ?0 .\n FILTER (?0 != fb:m.0jcx) \n} LIMIT

300"}, ...],

"parsed_query" :

{"content_token_positions" : [2, ...],
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"identified_entities" : [{" entity" : {"mid" : "m.0jcx", "name

" : "Albert Einstein"}, "perfect_match" : true , "score" :

1249375 , "surface_score" : 0.998050830195 , "text_match" :

false , "token_positions" : [2,3], "types" : [" people.

person", ...]}, ... ],

"is_count" : false ,

"target_type" : "(’location ’, 0.7), (’event ’, 0.6), (’

conference ’, 0.6)",

"tokens" : [{" lemma" : "where", "offset" : 0, "orth" : "where

", "tag" : "WRB"}, ... ]},

"raw_query" : "where was albert einstein born"

}

The information on how to train, build and run the Aqqu system backend can be

found under the following link:

https://github.com/ad-freiburg/aqqu

Aqqu uses docker, hence it is possible to create multiple different containers and to

train the system with different parameters and datasets in each of these containers.
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4 Context Tracking

In natural language, context can often clarify the meaning of a question and simplify

the search for an answer. We want to test whether by providing a conversational

context we will improve the flexibility, convenience and performance of Aqqu. The

Aqqu question answering process includes the following steps:

• Entity Matching

• Candidate Generation

• Relation Matching

• Features Extraction

• Candidate Pruning

• Candidate Ranking

The strategy of the system is to match as many entities as possible, exclude the

least relevant answers and score the matches. The main approach to implementing

conversation following in this project is to store relevantly matched entities from

the previous questions and add these to the set of identified entities of the current

question, if the system finds a pronoun in the processed question. Therefore, Aqqu

will also take the objects mentioned before into account. The additional entities can

be seen as the necessary context for the system to figure out an answer.

13



Of course the context is not always relevant. Sometimes a user can ask questions

about several unrelated subjects. This is why in this approach the system only adds

the previous entities to the entity set if there is a pronoun in the current question.

4.1 Main Approach

The main approach for the conversation tracking consists of the following steps:

1. Store the identified entities (ID and name) after the system gets a result.

2. Look for pronouns in further queries.

3. If the processed query contains a pronoun - add the previous entities to the list

of matched entities; if it does not – treat the query as usual.

All these steps are done on the client side.

4. On the Aqqu backend side: process the list of identified entities (extended by

the context entites or not) and identify the gender for each entity (for gender

version).

An example of a resulting url for a question that contains a pronoun could be:

http://titan.informatik.privat:8090/?q=where%20was%20he%20born&p=m.0jcx,

AlbertEinstein

p= indicates an additional entity, where m.0jcx is the entity ID and Albert Einstein

is the entity name. Also, more than one additional entity can be concatenated to the

end of the url:

http://titan.informatik.privat:8090/?q=where%20was%20he%20born&p=m.0jcx,

AlbertEinstein&p=m.05d1y,NikolaTesla
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In this case, both Albert Einstein and Nicola Tesla are added to the identified entities.

The system stores both these entities in the query and in the results. This allows the

system to also continue a conversation, if the following questions refer to some entity

from the previous answers.

For example:

User: Where was Albert Einstein born?

Chatbot answer 1: Albert Einstein, place of birth: Ulm

User: Where is it?

Chatbot answer 1 : Albert Einstein, location: Germany, Princeton, Munich,

Bern

Chatbot answer 2: Ulm, containedby: Germany, Baden-Württemberg

We built a gender identifier in the system to take the gender of an entity into

account.

4.2 Gender Identification

For each entity the system identifies a gender and stores it into a dictionary. The

gender identification is done by the Aqqu backend side. The dictionary is stored in

the JSON, that is sent as an answer to the chatbot. To identify a gender of an entity

the system uses one of two methods:

1. Find a genus in the gender.csv file. The gender.csv file contains around 3.5

million entities. Each entity is marked as Male, Female or has no mark. The

system looks an entity up in the file and if the entity is found – its gender will

be stored in a gender dictionary.
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2. If the entity is not found in the gender.csv file the system tries to guess the

gender. To guess the gender we used a gender-guesser python module.

Of course the gender can be wrongly identified. For example the entity Bahamas is a

country and should be identified as Neutral. However the name Bahamas is stored as

Male in gender.csv. This may lead to the following confusing dialogue:

User: What language is spoken in the Bahamas?

Chatbot: Bahamas, languages spoken: English Language, Bahamas Creole

English Language

User: Where is it?

Chatbot: Bahamas Creole English Language, main country: Bahamas

The system does not know that it should be related to the Bahamas.

Despite such mistakes the gender identification with the gender.csv file is more reliable.

The gender-guesser does not work for gender-neutral names and can not identify a

gender correctly for such entities.

Another example of a wrong gender identification is:

User: Where did Coco Chanel live?

Chatbot: Coco Chanel, location: Paris

User: What country is it a capital of?

Chatbot: Maine-et-Loire, capital: Angers

The system does not find an entity Paris in the gender.csv file and uses the gender-

guesser. The gender-guesser takes the city name Paris for a female name and identifies

it as a Female entity.

The system stores plural and singular entities together. Therefore the pronouns it

and they are treated equally.
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4.3 Usage

The conversational tracking functionality is included in the Aqqu backend and can

be found under the link:

https://ad-git.informatik.uni-freiburg.de/ad296/Aqqu

The system can either process questions without any context, i. e. any additional

entities, or process questions with entity-based context. This makes it a backwards

compatible addition - as long as the feature is not used, Aqqu works as before.
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5 Aqqu Chatbot

5.1 Question Answering with Aqqu Chatbot

A conversational web UI in the form of a chatbot was developed within this project.

The Aqqu chatbot was built using Flask. The application takes the text from the

Question field and sends a request to Aqqu’s backend. Aqqu gives an answer in the

form of an API, which then is transformed into a readable answer in the application.

The application stores the entities in the cache, in order to process potential future

questions with pronouns. The cache is always overwritten when the next question

does not have pronouns. The chatbot always gives the answer with the highest

rank first. To get another answer, the user can click on the Next answer button.

When there are no possible candidates left, the application will report, that it has no

alternative answers.

The format of the answer in the Aqqu Chatterbot is: entity name,candidate relation

match: all answers (all answers are presented sequentially and comma-separated).

In the answer from Figure 1, Albert Einstein is the entity name, place of birth is

the candidate relation match and Ulm is the answer. The additional answers are

obtained by clicking the "Next Answer" button.

In Figure 2, the context tracking is shown. The system recognizes that with he, the

user means Albert Einstein and gives correct answers.
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Figure 1: An example of question answering in Aqqu Chatbot.

Figure 2: An example of question answering with additional context-based questions.
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This behavior can cause some problems for questions where an entity as well as a

pronoun are given (Figure 3). For example: ‘Who was Isaac Newton and what did

he do?’ In this case the application will use both Isaac Newton and the previously

stored entity. In the following picture it is shown that the system has both identified

Issac Newton and Albert Einstein. The answer referring to Isaac Newton got a higher

rank – thus it is the first candidate.

Figure 3: An example of question answering with two main identified entities.

In the Figure 4 the application has not found any suitable candidates.
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Figure 4: No answers found.

Sometimes it gives wrong answers as well (Figure 5).

Figure 5: Wrong answer found.

The system tracks female, male and neutral entities separately. This allows a user to

ask additional questions to a question that has been asked a few rounds before, if the
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questions in between have a different gender. This is also more similar to the human

way to keep a dialogue.

Figure 6: An example of a separate tracking of male and female genders.

5.2 Extending the Dataset with Aqqu Chatbot

Collecting data for question answering systems is a difficult task. It has to be done

by humans and requires a lot of work: creating questions, identifying the entities full

names and id, finding the right answers to the question, writing a SPARQL query of

the question and storing the question and the answer in a special format, that can be

later processed by a computer. All that makes the data collection an expensive and

tiresome process.
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With the Aqqu Chatbot question-answer storing functionality the collecting of data

can be done with much less effort.

In the chatbot a user can mark an answer as correct by clicking a gray check sign

button right in the answer area. There is such a button on the left side of each answer

candidate.

Figure 7: Each answer candidate can be marked as correct by clicking the gray
button next to it.

When the user marks a correct answer – the gray button changes to green and all

the other gray buttons disappear. Therefore no other candidate can be marked as

correct. When the Next Answer button is clicked however, the next candidate can

be marked as correct and the previous question-answer will be overwritten in the

WebQSP format dataset by the new selection.
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Figure 8: Gray buttons turn green after clicking.

If the user asks the same question again and marks a new correct answer, the old

question-answer pair will be overwritten in the dataset (Figures 9-10).

The Aqqu Chatbot dataset is saved on a server, where the Aqqu backend container is

stored. For each user there is a separate dataset in the WebQSP format. To identify

a user a unique user agent string is used. An example of such a string could be:

Mozilla/5.0(X11;Ubuntu;Linuxx86_64;rv:68.0)Gecko/20000000Firefox/68.0
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Figure 9: An additional candidate can be chosen to replace the previous answer.

We use different datasets for each user in order to protect the stored data. A

user can only overwrite his/her own answers. Different users’ answers can not inter-

fere with each other. Some users can give more correct answers than others. It is

possible to evaluate the data provided by users of the Aqqu Chatbot and exclude the

users with a high error ratio.

With the Aqqu Chatbot dataset extension functionality it is rather easy to augment

the existing WebQSP dataset. Training the model on a bigger dataset can improve

the question answering of Aqqu in the future.
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Figure 10: The answer can be overwritten in the dataset.
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5.3 Usage

The Aqqu Chatbot code can be found under:

https://ad-git.informatik.uni-freiburg.de/ad296/AqquChatterbot/tree/Gender
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6 Datasets for Training and Evaluation

6.1 Original Dataset

For the evaluation of the system performance we used the WebQSP dataset. The

WebQSP dataset was split into training (70%) and testing (30%) datasets. We chose

the same splitting ratio, as the one used for the evaluation of the non-conversational

Aqqu [1]. The original dataset consists of a list of questions. Here is an example of a

question from the dataset:

{

"Version": "1.0",

"FreebaseVersion": "2015 -08 -09" ,

"Questions": [

{

"QuestionId": "WebQTest -0",

"RawQuestion": "what does jamaican people speak?",

"ProcessedQuestion": "what does jamaican people speak",

"Parses": [

{

"ParseId": "WebQTest -0.P0",

"AnnotatorId": 0,

"AnnotatorComment": {

"ParseQuality": "Complete",

"QuestionQuality": "Good",

"Confidence": "Normal",
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"FreeFormComment": "First -round parse verification"

},

"Sparql": "PREFIX ns: <http :// rdf.freebase.com/ns/>\

nSELECT DISTINCT ?x\nWHERE {\ nFILTER (?x != ns:m

.03 _r3)\nFILTER (! isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\nns:m.03 _r3 ns:

location.country.languages_spoken ?x .\n}\n",

"PotentialTopicEntityMention": "jamaican",

"TopicEntityName": "Jamaica",

"TopicEntityMid": "m.03_r3",

"InferentialChain": [

"location.country.languages_spoken"

],

"Constraints": [],

"Time": null ,

"Order": null ,

"Answers": [

{

"AnswerType": "Entity",

"AnswerArgument": "m.01428y",

"EntityName": "Jamaican English"

},

{

"AnswerType": "Entity",

"AnswerArgument": "m.04 ygk0",

"EntityName": "Jamaican Creole English Language"

}

]

},

{

"ParseId": "WebQTest -0.P1",

"AnnotatorId": 0,

"AnnotatorComment": {
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"ParseQuality": "Complete",

"QuestionQuality": "Good",

"Confidence": "Normal",

"FreeFormComment": "First -round parse verification"

},

"Sparql": "PREFIX ns: <http :// rdf.freebase.com/ns/>\

nSELECT DISTINCT ?x\nWHERE {\ nFILTER (?x != ns:m

.03 _r3)\nFILTER (! isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\nns:m.03 _r3 ns:

location.country.official_language ?x .\n}\n",

"PotentialTopicEntityMention": "jamaican",

"TopicEntityName": "Jamaica",

"TopicEntityMid": "m.03_r3",

"InferentialChain": [

"location.country.official_language"

],

"Constraints": [],

"Time": null ,

"Order": null ,

"Answers": [

{

"AnswerType": "Entity",

"AnswerArgument": "m.01428y",

"EntityName": "Jamaican English"

}

]

}

]

}, ... ]}

The dataset consists of a list of questions. A few important parameters of a question

in the dataset are:
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• RawQuestion - not processed query text that may for example include the

question mark.

• ProcessedQuestion - processed query text, lowercase and without a question

mark.

• Sparql - the executed SPARQL query.

• TopicEntityName - the name of the entity.

• TopicEntityMid - the knowledge base ID of the entity.

• Answers - the answers for the question. A question can have many correct

answers. For example, for a question What language did ancient Romans write

in? there are two answers: Greek Language and Latin Language.

• AnswerType - the answer type can be either Entity or Value.

• EntityName - if the answer type is not Entity the EntityNameis null.

• AnswerArgument - entity ID for answer type Entity and value for the type

Value.

6.2 Conversational Dataset

To evaluate the performance of the system, the questions from the dataset were

reshaped into conversations. The script for converting an original WebQSP dataset

to a conversational dataset can be found under: https://ad-git.informatik.

uni-freiburg.de/ad/Aqqu/create_data_set.py
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The script gathers the questions into groups according to their entities. In these

groups, the first question does not change. In all of the following questions, the

entities were replaced with a corresponding pronoun. The entity is defined in the

dataset under TopicEntityName. For each entity, the script determines its gender

and replaces the entity name with either he, she or it. To find out, which gender the

entity belongs to, the script first looks for the entity name in the gender.csv file. If

the name is not found, then the gender is guessed using the gender_guesser package.

This is an example of a conversation from the conversational WebQSP:

Leading query: what did galileo do to become famous?

Second query: what he was famous for?

Third query: what discovery did he make?

The structure of the conversational dataset is:

{

"FreebaseVersion": "2015 -08 -09" ,

"Conversations": [

{

"Questions": [

{

"Parses": [

{

"Sparql": "PREFIX ns: <http :// rdf.

freebase.com/ns/>\nSELECT

DISTINCT ?x\nWHERE {\ nFILTER (?x

!= ns:m.07 _mj3)\nFILTER (!

isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\

nns:m.07 _mj3 ns:base.

schemastaging.athlete_extra.

salary ?y .\n?y ns:base.

schemastaging.athlete_salary.
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team ?x .\n}\n",

"AnnotatorComment": {

"FreeFormComment": "First -round

parse verification",

"QuestionQuality": "Good",

"ParseQuality": "Complete",

"Confidence": "Normal"

},

"Answers": [

{

"AnswerArgument": "m.0bl8l

",

"EntityName": "Aston Villa

F.C.",

"AnswerType": "Entity"

}

],

"Time": null ,

"AnnotatorId": 0,

"Constraints": [],

"TopicEntityMid": "m.07 _mj3",

"TopicEntityName": "Stephen Ireland

",

"InferentialChain": [

"base.schemastaging.

athlete_extra.salary",

"base.schemastaging.

athlete_salary.team"

],

"PotentialTopicEntityMention": "

stephen ireland",

"Order": null ,

"ParseId": "WebQTest -762.P0"
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}

],

"utterance": "who has stephen ireland

played for",

"id": 5,

"RawQuestion": "who has stephen ireland

played for?",

"targetOrigSparql": "PREFIX ns: <http ://rdf

.freebase.com/ns/>\nSELECT DISTINCT ?x\

nWHERE {\ nFILTER (?x != ns:m.07 _mj3)\

nFILTER (! isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\nns:m

.07 _mj3 ns:base.schemastaging.

athlete_extra.salary ?y .\n?y ns:base.

schemastaging.athlete_salary.team ?x .\n

}\n",

"ProcessedQuestion": "who has stephen

ireland played for",

"results": [

"Aston␣Villa␣F.C."

],

"QuestionId": "WebQTest -762"

},

{

"Parses": [

{

"Sparql": "PREFIX ns: <http :// rdf.

freebase.com/ns/>\nSELECT

DISTINCT ?x\nWHERE {\ nFILTER (?x

!= ns:m.07 _mj3)\nFILTER (!

isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\

nns:m.07 _mj3 ns:sports.
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pro_athlete.teams ?y .\n?y ns:

sports.sports_team_roster.team ?

x .\n}\n",

"AnnotatorComment": {

"FreeFormComment": "First -round

parse verification",

"QuestionQuality": "Good",

"ParseQuality": "Complete",

"Confidence": "Normal"

},

"Answers": [

{

"AnswerArgument": "m.01634x

",

"EntityName": "Manchester

City F.C.",

"AnswerType": "Entity"

},

{

"AnswerArgument": "m.01 cwm1

",

"EntityName": "Stoke City F

.C.",

"AnswerType": "Entity"

},

{

"AnswerArgument": "m.0bl8l

",

"EntityName": "Aston Villa

F.C.",

"AnswerType": "Entity"

},

{
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"AnswerArgument": "m.0fvly

",

"EntityName": "Newcastle

United F.C.",

"AnswerType": "Entity"

}

],

"Time": null ,

"AnnotatorId": 0,

"Constraints": [],

"TopicEntityMid": "m.07 _mj3",

"TopicEntityName": "Stephen Ireland

",

"InferentialChain": [

"sports.pro_athlete.teams",

"sports.sports_team_roster.team

"

],

"PotentialTopicEntityMention": "

stephen ireland",

"Order": null ,

"ParseId": "WebQTest -762.P1"

}

],

"utterance": "who has he played for",

"id": 6,

"RawQuestion": "who has he played for?",

"targetOrigSparql": "PREFIX ns: <http ://rdf

.freebase.com/ns/>\nSELECT DISTINCT ?x\

nWHERE {\ nFILTER (?x != ns:m.07 _mj3)\

nFILTER (! isLiteral (?x) OR lang(?x) = ’’

OR langMatches(lang(?x), ’en ’))\nns:m

.07 _mj3 ns:sports.pro_athlete.teams ?y
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.\n?y ns:sports.sports_team_roster.team

?x .\n}\n",

"ProcessedQuestion": "who has he played for

",

"results": [

"Manchester␣City␣F.C.",

"Stoke␣City␣F.C.",

"Aston␣Villa␣F.C.",

"Newcastle␣United␣F.C."

],

"QuestionId": "WebQTest -762"

}

],

"TopicEntityMid": "m.07 _mj3"

}, ... ]}

6.3 Basic Conversational Dataset

In the basic case there is one conversation for each entity. Entities that only have one

question make a one-question conversation with no additional pronoun-questions. The

basic conversational training dataset contains 1720 conversations, the longest one has

27 questions, the average conversation contains 2 questions, and the training dataset

has around 3k questions in total. The evaluation set contains 1072 conversations, the

longest one has 14 questions, the average conversation contains 1.7 questions, and

the conversational training dataset has 1815 questions in total.
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6.4 Extended Conversational Dataset

We created an extended version of the training conversational dataset to improve the

trained model. The main two ideas to augment the training dataset are:

1. For entities that have more than one query we call the first query (without

the entity-pronoun replacement in a conversation) a leading question. If an

entity has N questions we create N conversations. In each conversation one

of the N questions is a leading question. A conversation always starts with

a different question. We get different conversations that consist of the same

questions. As an example of a 2-question set {Where was Albert Einstein born?,

Who was Albert Einstein married to?} for an entity Albert Einstein: The first

conversation would be:

- Where was Albert Einstein born?

- Who was he married to?

The second conversation would be:

- Who was Albert Einstein married to?

- Where was he born?

2. For entities with only one question we create one conversation that contains two

queries. The first query is the original query, and the second one is the same

query but with the entity replaced with a corresponding pronoun. Basically

what we get is a conversation where the second question is a pronoun-repetition

of the first question. As an example:

First question: Where was Albert Einstein born?

Second question: Where was he born?
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The extended training set contains 3453 conversations, the longest one has 27 questions,

the average conversation contains 2 questions, and the training dataset has around

3k questions in total. These two approaches to augment the training dataset are

relatively easy but efficient. In the evaluation part we will show how training on the

extended dataset helped to improve the overall performance.
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7 Evaluation

The conversational question answering is a significantly more difficult task than the

single question answering. The system has to read the context and apply it to find

the right answer. In this part of the work we will evaluate the non-conversational

and conversational Aqqu to see how the context tracking functionality influences the

overall precision of the question answering process with Aqqu.

To evaluate the system we used the code from

https://ad-git.informatik.uni-freiburg.de/ad/aqqu-webserver

as a base and adapted it for the conversational data. The adapted code can be found

under:

https://ad-git.informatik.uni-freiburg.de/ad/aqqu-webserver/tree/conversational_

gender

7.1 Evaluation Metrics

• q1, . . . , qn: questions

• c1, . . . , ci: the answer candidates

• g1, . . . , gn: multiple answers of the gold answer
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• a1, . . . , an: the answers from the system for the first candidate

• GA-Size: Gold answer size is the number of ground truth answers (|g1, g2, . . . , gn|).

• BCA-Size: Best candidate answer size is the number of answers of the first

candidate (|a1, a2, . . . , an|)).

• Candidates: The number of all predicted candidates (|c1, c2, . . . , ci|).

• Precision: The precision shows what percentage of the answers from the best

candidate are correct.

Precison =
TP

TP + FP
,

where TP is a true positive, i.e. TP = |ak, . . . , am|, where ak, . . . , am are correct

answers and FP is a false positive, i.e. FP = |al, . . . , ap|, where al, . . . , ap are

false answers.

For example:

Utterance GA-size GA BCA-Size BCA

who does
ronaldinho play
for now 2011?

2

"Brazil national
football team"
"Clube de Regatas
do Flamengo"

2

"Clube Atlético
Mineiro"
"Clube de Regatas
do Flamengo"

Only one answer out of two is correct and only one correct answer is found.

Therefore TP = 1, FP = 1, Precision = 1/(1+1) = 0.5

• Recall. The recall measures how well the system finds correct answers, i.e. what

percentage of correct answers are found.

Recall =
TP

TP + FN
,
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where FN is false negative, i.e. FN = |gl, . . . , gp|, where gl, . . . , gp are correct

answers that were not found by the system. For example:

Utterance GA-size GA BCA-Size BCA
what state does
romney live in? 1 "Massachusetts" 2 "Massachusetts"

"Bloomfield Hills"

Only one answer out of two is correct and only one correct answer is found.

Therefore TP = 1, FP = 1, Precision = 1/(1+1) = 0.5

• F1: It is the harmonic average of the precision and recall. The best value is 1

(Precision → 1 and Recall → 1) and the worst is 0 (Precision → 0 and Recall

→ 0).

F1 = 2
Precison · Recall
Precision+ Recall

• Parse Match: This parameters shows if the candidate relation that gives an

answer with the best F1 score is matched perfectly to the ground truth (>0.99

matching).

7.2 Averaged Evaluation Metrics

• Questions: Total number of questions in the evaluation dataset.

• Average Precision: The average precision of all questions.

• Average Recall: The average recall of all questions.

• Average F1: The average F1 across all questions.

average F1 =
1

n

n∑
i=1

F1(gi, ai)
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• Accuracy: The percentage of queries answered with the exact gold answer.

accuracy =
1

n

n∑
i=1

I(gi = ai)

• Parse Accuracy: Average parse match across all questions.

7.3 Example of an Evaluation on a Small Dataset

As an example we have done an evaluation for a tiny dataset (he_data_tiny.json,

consists of 14 questions). The dataset has a conversational structure with pronoun-

replacement and no gender-identification. The entities are only replaced with he.

Lets look at the evaluation results.
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ID Utterance GA-
Size

BCA-
Size Candidates Precision Recall F1 Parse

Match

0 what time zone
is chicago in right now? 1 1 3 1 1 1 True

1 where to stay
there tourist? 1 1 21 1 1 1 True

2 who does ronaldinho
play for now 2011? 2 2 21 0.5 0.5 0.5 False

3 what is ella
fitzgerald name? 2 2 9 1 1 1 True

4 what state does
romney live in? 1 2 10 0.5 1 0.67 False

5 where did his
parents come from? 1 1 31 1 1 1 True

6 what university
did he graduated from? 1 6 21 0 0 0 False

7 where did he
graduated college? 1 6 19 0 0 0 False

8 what colleges
did he attend? 5 6 1 0 0 0 False

9 when did he
become governor? 1 1 6 0 0 0 False

10 where is his
family from? 1 1 8 0.5 1 0.67 False

11 what degrees
does he have? 3 6 1 0 0 0 False

12 who does jeremy
shockey play for in 2012? 1 1 19 1 1 1 True

13 what does
bolivia border? 5 5 10 1 1 1 False

Table 1: Evaluation on a tiny dataset.

Questions 14
Average Precision 0.65
Average Recall 0.82
Average F1 0.689
Accuracy 0.500
Parse Accuracy 0.357

Table 2: Average results for tiny dataset.
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8 Experiments

We have conducted five different experiments with the Aqqu system trained on:

1. Original dataset – Experiments 1-3

2. Basic Conversational Dataset – Experiment 4

3. Extended Conversational Dataset – Experiment 5

8.1 Experiment 1

• data with conversational structure and without pronoun replacement

• without gender identification

• not trained with context tracking

• used conversations_WebQSP.json
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Training Dataset Original Dataset
Questions 1815
Average Precision 0.67
Average Recall 0.72
Average F1 0.657
Accuracy 0.478
Parse Accuracy 0.510

Table 3: Results of experiment 1.

8.2 Experiment 2

• data with conversational structure and with pronoun replacement

• without gender identification

• not trained with context tracking

• used he_conversational_WebQSP

Training Dataset Original Dataset
Questions 1815
Average Precision 0.50
Average Recall 0.55
Average F1 0.495
Accuracy 0.355
Parse Accuracy 0.362

Table 4: Results of experiment 2.

8.3 Experiment 3

• data with conversational structure and with pronoun replacement

• with gender identification
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• not trained with context tracking

• used WebQSP_conversation_gender_test.json

Training Dataset Original Dataset
Questions 1815
Average Precision 0.60
Average Recall 0.65
Average F1 0.586
Accuracy 0.417
Parse Accuracy 0.440

Table 5: Results of experiment 3.

8.4 Analysis of Experiments 1-3

In the evaluation results for the system that was trained on non-conversational data,

we can see that the performance of a conversational system is inferior, when compared

to a non-conversational one. Also we see that the system with gender identification

performs better than the system without it. Therefore we conduct the following

experiments with gender identification.

8.5 Experiment 4

• data with conversational structure and with pronoun replacement

• with gender identification

• trained with context tracking on basic conversational dataset

• used WebQSP_conversation_gender_test.json
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Training Dataset Original Dataset
Questions 1815
Average Precision 0.59
Average Recall 0.63
Average F1 0.575
Accuracy 0.417
Parse Accuracy 0.440

Table 6: Results of experiment 4.

8.6 Experiment 5

• data with conversational structure and with pronoun replacement

• with gender identification

• trained with context tracking on extended conversational dataset

• used WebQSP_conversation_gender_test.json

Training Dataset Original Dataset
Questions 1815
Average Precision 0.60
Average Recall 0.645
Average F1 0.584
Accuracy 0.420
Parse Accuracy 0.425

Table 7: Results of experiment 5.
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9 Conclusions

We have added a context tracking functionality into the Aqqu question answering

system and called it conversational Aqqu. The context tracking functionality is based

on the replacement of some entities in the queries with the corresponding pronouns.

We have also developed a web chatbot called Aqqu Chatbot. The Aqqu Chatbot uses

the conversational Aqqu as the backend.

We have conducted a set of experiments to evaluate the performance of the conver-

sational Aqqu. In the results of the experiments we can see that the conversational

Aqqu performs slightly worse than the original Aqqu system. The F1 score of the

original Aqqu is 65.7% and the best conversational Aqqu result has the F1 score of

58.6%. There is an accuracy decrease of 7.1%.

The possible reasons for the errors could be:

• texiit Mistakes during the generation of pronoun questions for conversational

datasets which may result in an unnatural grammar in the questions for training

and evaluation.

• Mistakes in gender identification during question answering that may cause a

wrong context identification, which leads to errors in question answering.

• The context gives the system more entities to process. The more entities – the

more difficult it is to prune the incorrect answers and rank the correct ones.
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There is more room for errors and the probability of having the correct answer

being pruned or getting a low ranking score is higher.

However the conversational question answering is more convenient and intuitive. The

loss of precision is a trade-off to achieve a more human-like question answering.

We have also built in a data augmentation functionality in the Aqqu Chatbot. When

a user gets an answer for a question in the Aqqu Chatbot, if there is a correct answer

among all the answer candidates, the user can mark this answer as correct. The

question-answer pair will be saved in the WebQSP format. With this functionality it

is very convinient to collect more high-quality data for further training and evaluation

of the Aqqu question answering system.
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10 Future Work

The conversational question answering with Aqqu can be further improved. It is

possible to add a new feature, that indicates whether a candidate is generated from

context or from a current question.

Also the data augmentation functionality can be developed to additionaly save the

context of a question-answer pair in the WebQSP format. This would further enhance

the training.

A good idea could be to collect more data with the Aqqu Chatbot data augmentation

functionality and train the system on a bigger dataset.

The Aqqu system only tracks the pronoun-based context. It could be possible to

implement other approaches, for example for the system to also process additional

single interrogative word questions: "Where?", "When?", etc.
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11 Useful Links

Aqqu website:

http://aqqu.informatik.uni-freiburg.de

The information how to train, build and run the Aqqu system backend:

https://ad-git.informatik.uni-freiburg.de/ad/Aqqu

Aqqu backend with conversational tracking functionality:

https://ad-git.informatik.uni-freiburg.de/ad296/Aqqu

The Aqqu chatbot:

https://ad-git.informatik.uni-freiburg.de/ad296/AqquChatterbot/tree/Gender

The script for converting a dataset to a conversational dataset:

https://ad-git.informatik.uni-freiburg.de/ad/Aqqu/create_data_set.py

The evaluation code:

https://ad-git.informatik.uni-freiburg.de/ad/aqqu-webserver/tree/conversational_

gender
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