ENTITY UNIFICATION FOR SEMANTIC SEARCH

Albert-Ludwigs-University Freiburg
2013
Anton Stepan
Roadmap

• What is the problem?
• Our Idea
• Algorithm
• Evaluation
• Problems & Improvements
Problem

- **Unification of two or more ontologies** (Triple Datasets)
- Different ontologies with different naming conventions
- Multiple entities with same names
- Which of them belong together?

```plaintext
source1
...
Berlin_1
Berlin_2
Berlin_3
Berlin_4
Berlin_5
Berlin_6
...

source2
...
Berlin_a
Berlin_b
Berlin_c
...
```
Unification with the help of more information

→ further information about entities

... Berlin located-in Germany
Berlin has-longitude 52.31
Berlin has-latitude 13.24
Berlin located-in Berlin, _(District)
Berlin has-population 3,375,222
...
Germany contains Berlin
...
...
Our Algorithm Idea/Approach

• **Modular**
 → Replaceable sub-parts
 → tweakable

• **Scores**
 • Different scores for different similarities
 • Tweakable by user / Set focus
 • …without recompiling
Algorithm Outline

1. Parse Arguments
 2. Process Files
 Create & Combine Entities

3. Unify Entities
 - Pre Check
 - Full Check
 Unify

4. Generate Output & Statistics
Occurring Problems in Unification Procedure

• Multiple entities with the same name
 → Relation comparison

• Entities with slightly different names
 → Prefix check

• Same entities with different names
 • UTF8, ASCII, ...
 • Native names, English names

• Entities with sparse relations
 → Iterations can help
Occuring Problems in Unification Procedure

• Different entities with similar names and similar relations
 → |words|-check

• Relations with different names
 → Relationsmap

• Mistakes in the database
 → scores and thresholds
Algorithm Outline

1. Parse Arguments
2. Process Files
 - Create & Combine Entities
3. Unify Entities
 - Pre Check
 - Full Check
 - Unify
4. Generate Output & Statistics
1. Parse Arguments

• **Required**
 • Filenames: Input 1 & 2
 • Scores

• **Optional**
 • Default Folder with config-file
 • Output filename
 • Relationmap (translate relations: „located“ → „located-in“
 • Iterations
 • Debug
 • Generate Example Files (config, relationmap, scores)
2. Process files

Triples: "Subject <tab> Relation <tab> Object"

"Berlin located-in Germany"
"Berlin located-in Berlin,_(District)"
"Freiburg located-in Germany"

• Two Maps: ID → EntityPtr*
 • std::map<std::string, EntityPtr*> map1

• EntityPtr (datastructure)
 • Containing Pointer to real Entity
 • Possible further information
3. Unify

• Pre Check
 • Possible equal?
 • Prefixcheck + |Words|-check

• Full Check
 • Comparing relations
 • Computing scores

• Unify
 • if (Score_{OVERALL} > Threshold)
 • Reallocating EntityPtr
 • Merging relations
UNIFY Step 0 - comparison

- **Goal:** Unification of „Berlin“ and „Berlin,_(Berlin)“

Relations of „Berlin“ and „Berlin,_(Berlin)“ were compared and $score_{OVERALL}$ is bigger than threshold.
UNIFY Step 1 – merge flag & ID

- **Goal:** Unification of „Berlin“ and „Berlin,_(Berlin)“

→ Set merge flag to true & add ID
map[„Berlin“]→getPtr()→setMerged(true);
UNIFY Step 2 – unify relations

Real entities

Map<string, vector<EntityPtr*>>

… „located-in“
… „has-population“
… „has-longitude“
… „is-a“
… „contains“
… „has-population“

vector<EntityPtr*>
UNIFY Step 2 – unify relations

- Each entity E has a relation set R_E
- all triples: E relationname Object

$$R_E = \{(r_i.name, f(r_i)) : r_i \in \text{relations}_{\text{out}}(E)\}$$
- with r_i is the set of relation targets, i.e. $f(r_i) = \{y : (E, y) \in R_i\}$
- \rightarrow unification of relations = unification of two sets
UNIFY Step 3 – Reallocation

Goal: Unification of „Berlin“ and „Berlin,_(Berlin)“

Reallocation the EntityPtr of „Berlin,_(Berlin)“

→ All relations with target [Berlin,_(Berlin)] now also point to [Berlin]
UNIFY Step 4 – Deleting [Berlin, ...]

- **Goal:** Unification of „Berlin“ and „Berlin,_(Berlin)“

![Diagram showing the process of unification with real entities and pointers.](image)
Evaluation

- Two datasets based on Geonames and Freebase

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Lines</th>
<th>#Entities</th>
<th>Filesize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geonames</td>
<td>813,489</td>
<td>383,421</td>
<td>37 MB</td>
</tr>
<tr>
<td>Freebase</td>
<td>4,710,584</td>
<td>3,006,213</td>
<td>244 MB</td>
</tr>
</tbody>
</table>

- Result

<table>
<thead>
<tr>
<th>ID</th>
<th>Debug</th>
<th>Iterations</th>
<th>Avg. Elapsed Time (Unification Phase)</th>
<th>Unification Count</th>
<th>Unification percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off</td>
<td>1</td>
<td>15.21 s</td>
<td>161,746</td>
<td>42.18 %</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>2</td>
<td>22.68 s</td>
<td>197,500</td>
<td>51.50 %</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
<td>3</td>
<td>27.98 s</td>
<td>203,694</td>
<td>53.12 %</td>
</tr>
<tr>
<td>4</td>
<td>Off</td>
<td>20</td>
<td>64.44 s</td>
<td>205,897</td>
<td>53.69 %</td>
</tr>
<tr>
<td>5</td>
<td>On</td>
<td>1</td>
<td>2.22 min</td>
<td>161,746</td>
<td>42.18 %</td>
</tr>
<tr>
<td>6</td>
<td>On</td>
<td>2</td>
<td>5.13 min</td>
<td>197,500</td>
<td>51.50 %</td>
</tr>
</tbody>
</table>
Problems & Improvements

• Different entity names
 • „Nordrhein-Westfalen“ VS „North Rhine-Westphalia”
 → Entity-Translation-Map

• Same name with different meaning
 • Geonames
 • “Freiburg” <the city>
 • “Freiburg Region” <the region>
 • Freebase
 • “Freiburg im Breisgau” <the city>
 • “Freiburg” <the region>
 • City and Region share same information

• Special Places
Live Demo