
Bachelor Thesis

Entity Unification for
Semantic Search

Anton Stepan

18.07.2013

Albert-Ludwigs-University Freiburg im Breisgau
Faculty of Engineering

Department of Computer Science
Chair of Algorithms and Data Structures

Bearbeitungszeitraum
18. 04. 2013 – 18. 07. 2013

Gutachter
Prof. Dr. Hannah Bast

Betreuer
M.Sc. Björn Buchhold

Declaration

I hereby declare, that I am the sole author and composer of my Thesis and that no
other sources or learning aids, other than those listed, have been used. Furthermore,
I declare that I have acknowledged the work of others by providing detailed references
of said work. I hereby also declare, that my Thesis has not been prepared for another
examination or assignment, either wholly or excerpts thereof.

Freiburg, July 18th, 2013
Anton Stepan

Contents

Acknowledgments 1

Zusammenfassung 3

Abstract 5

1. Introduction 7
1.1. Motivation . 7
1.2. Contribution . 8
1.3. Structure of this Thesis . 9

2. Related Work 11

3. Unification 13
3.1. Overview . 13

3.1.1. Parsing command line arguments 14
3.1.2. Processing Files . 14
3.1.3. Unification of Entities . 14
3.1.4. Output and statistics . 15

3.2. Preprocessing . 15
3.3. Recognizing similar entities . 16

3.3.1. Entities with slightly different name 16
3.3.2. Multiple entities with identical name 17
3.3.3. Same entities with different name 17
3.3.4. Entities with sparse relations 18
3.3.5. Different entitites with similar name and similar relations . . . 18
3.3.6. Relations with different name 18
3.3.7. Mistakes in the databases . 19

3.4. Unification . 19
3.4.1. Unification Phase . 20

4. Evaluation 23
4.1. Results . 23

4.1.1. Performance . 23
4.1.2. Quality . 24

4.2. Potential problems . 25

i

5. Conclusion 27
5.1. Future Work . 27

A. Appendix 29
A.1. Score description . 30

Bibliography 33

Acknowledgments

At this point I want to thank my supervisor, Prof. Hannah Bast, who made this
thesis possible by being very inspiring in her lectures. I also want to thank Björn
Buchhold for his very good explanation of semantic search, his guidance throughout
this work and the very helpful discussions.
Furthermore a special place in this list is reserved to my parents, for being a rock
solid foundation in my life, supporting me throughout my whole students’ career
and also to all my friends, especially Steph & Stella for their steady support in time
of need.
Last but not least, I would like to thank my girlfriend, Lilli, providing me with her
knowledge, her comfort and her unweary support despite my lack of time during the
last years. I would not have been able to achive anything of this without her.
- yo -
Anton

1

Zusammenfassung

In dieser Arbeit untersuchen und präsentieren wir ein Verfahren zum Vereinigen von
Ontologiedatensätzen mit dem Schwerpunkt auf ortsbezogenen Entitäten. Das damit
angestrebte Ziel ist, eine größere und komplexere Eingabedatenbank für die seman-
tische Suche zu erzeugen. Das in dieser Arbeit vorgestellte Verfahren erklärt eine
mögliche Herangehensweise für dieses Problem, erläutert aufkommende Schwierig-
keiten und demonstriert das Vorgehen anhand einer Anwendung. Unser Framework
zur Vereinigung basiert auf der Idee von Punkten, die für übereinstimmende rela-
tionen zwischen zwei Entitäten vergeben und gesammelt werden. Es ist für ein Paar
von Entitäten nur möglich sich zu verschmelzen, wenn sie mit ihren Punkten einen
spezifizierten Schwellenwert erreichen. Diese Punkte und Schwellenwerte sind sehr
flexibel und können durch den Benutzer in einer Konfigurationsdatei selbst festge-
legt werden, mit dem Ziel das Ergebnis der Vereinigung zu optimieren oder eine
besondere Gewichtung auf eine Kategorie von Vergleichen zu legen.
In einem Experiment wird die Performance und die Qualität überprüft, in dem eine
Vereinigung zweier Datensätze, basierend auf Geonames (37 MB) und Freebase (244
MB), durchgeführt wird, und dabei eine Vereinigung von mehr als 50% der kleineren
Ontologie, bei einer durchschnittlichen Laufzeit von 20 Sekunden, erreicht wird.

3

Abstract

In this paper we introduce and investigate a method to unify ontology datasets with
location based data. The goal is to generate a bigger and more complex input set
for semantic search engines. Our research explains a possible unification framework
to solve this problem, outlines arising obstructions and demonstrates our algorithm
with an application and an unification framework. The framework is based on the
idea of awarding scores in the unification process, gathered from matching relations
and only unifying two entities if they reach a specific score threshold. These scores
and thresholds are very flexible as the user can define them in a config file, with the
objective to tweak the result or set a specific weighting on a particular comparison
category.
With an experiment we review the performance and quality of our approach by
unifying two datasets, based on Geonames (37 MB) and Freebase (244 MB) and
achive more than 50% unification of the smaller ontology with an average execution
time of 20 seconds.

5

1. Introduction

In this thesis, we introduce and discuss the problem of entity unification that emer-
ges while extending datasets behind semantic search. Many of those datasets use
different entities for identical objects, which prevents a trivial merge algorithm. To
be able to unify those entities we need to consider the further information about
the objects, especially their relations. The following chapter introduces the motiva-
tion for the work, points out our contribution and gives a brief overview about the
structure of this thesis.

1.1. Motivation

With the enormous growth of the internet new data is published continously and it
may be hard for users to find the information they are looking for. One of the key
factors for the huge success of the word wide web are search engines, that provide
a userfriendly method to search the internet for specific topics. With fairly good
results on most queries, users are able to find quickly answers to their questions.
But there are still complex queries that sometimes do not return satisfying results. If
a user e.g. is looking for a list of „all scientists who were born in Berlin (Germany)“,
the classical full text search, to put it simple, will only return documents where
our query words appear in the text, and not a complete list the user is looking
for. If we are lucky, someone created such a list and published it on his website,
but this is rarely the case for complexe queries. The major problem of the classical
search engines is that they are not able to identify the „semantics“ - the meaning
- behind our query. For the above example query it does not know that „Berlin“ is
an instance of the class location, that „born in“ is a relation between two entities,
or that scientists is a class describing a special kind of persons. A semantic search
engine is able to identify entities in a search query, assign classes to the entities and
interprete the query, which leads to a result of specific classes instead of documents
just containing the words.
„Semantic Search“ is an upcoming hot topic in the field of computer science as
many big companies, for example Google1 are conducting research at it. Also at
the University of Freiburg at the Faculty of Engineering, the Chair of Algorithms
and Data Structures is researching in this topic and implementing its own semantic
search engine presented in the paper „Broccoli: Semantic Full-Text Search at your

1http://googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html

7

Chapter 1 Introduction

Fingertips“ 2. In semantic search the engine can identify the entities and relations
in the query and then „understand“ its meaning. In the previous example query „all
scientists who were born in Berlin“ the engine would understand that „scientists“
is a class, „Berlin“ an instance of a class and „born in“ a relation. It would then
return all entities of the class „Scientist“, which have a „born-in“ relation with the
object „Berlin“. To be able to idenfity all entities of a query, semantic search engines
need as many entities as possible in their database to recognize as much of the query
as possible. In this example we need information of entities which are of the class
scientist and have a relation which represents their place of birth. We also need the
information whether this birthplaces are actually located in Berlin, Germany. Our
result can only be satisfying if our entity database has enough data to fulfill our
query by identifying the entities and match them with the corresponding database
entries. It implies that the search results can only be as good as our entity database.
Usually the problem occurs that there is no single entity database, but multiple small
ones with each having a specific focus (i.e. locations, scientists, celebrities, brands,
...). To achieve the best possible results you need to combine those smaller databases
to a single one and be able to match and merge equal entities from different sources.
This unification process can be a very difficult task as many problems occure, like
for example the same entity in database 1 could have a completely different name
in database 2.
In this thesis we will discuss the results and the emerging problems we solved during
the creation of our EntityUnification program, which takes two entity databases
as an input and generates an unified output. The programm was developed using
C++, has about 2250 lines and test cases for the major parts using Googles test suite
„gtest“. We will point out the occuring problems in the relation based unification
process and present our suggested solutions. This paper shall describe several arising
problems of entity unification, reveal our intention to solve those problems and
compare different approaches based on the evaluation of the unified output.

1.2. Contribution

The main contributions of this thesis are:
• Identifying the major problems occuring in the process of entity unfication.
• An approach and implementation to unify two datasets with a strong focus on

location based entities with our program EntityUnification.
• An evaluation and explaination of different tuning parameters in our unifica-

tion algorithm in an experiment by unifying two datasets based on Geonames
and Freebase.

• Reveal problems for future research, which were too rich in detail for this work.
2http://broccoli.informatik.uni-freiburg.de/

8

1.3 Structure of this Thesis

While our framework works very well and achives nice results (see Chap. 4.1), there
are still many possible improvements to do. Therefore our thesis contains an outlook
on future enhancements, some already with a solution outline.

1.3. Structure of this Thesis

This work is separated into five chapters, which will lead to explain, evaluate and
discuss the problem of entity unification for semantic search.

• Chapter 1 introduces the backgrounds of this thesis and points out the cont-
ribution we would like to achieve.

• Chapter 2 provides an overview of other related work which has been done
in this particular topic.

• Chapter 3 describes the whole unification process from parsing the files, che-
cking whether two entities are the same and explaining the problems occuring
during the unfication process.

• Chapter 4 evaluates the results of our approach and compares different tuning
parameters.

• Chapter 5 sums up our contribution and discusses possible improvements
and future research possibilities.

9

2. Related Work

The unification of different entity databases is an often occuring problem as there
are multiple small- and midsized databases which have a strong focus on a certain
topic but no allrounder. This problem often needs a strongly customized solution
to provide a satisfying result, mostly done by hand, as each database has its own
syntax and naming conventions. In the topic of semantic search we want to combine
different entity databases to improve the backend of our engines and therefor improve
our query results. Other research papers often have the benefit of merging databases
which have the same naming convention as a basis.

For example PROMPT [NM00] describes an semi-automated ontology unification
process. Their algorithm compares entity classes based on their name and tries to
merge them, if possible. On conflicts the algorithm suggests possible solutions so
that the user can decide whether a merge is possible or not.

Another work called NERD [RT12] focuses on the unification of named entities pro-
vided by ten popular named entity extractors using their APIs. As a user you are
able to query the REST API1 of NERD, as NERD will deligate your query to its
extraction driver, which will query the named entity extractor websites. Afterwards
NERD will retrieve their output, unify it and map the annotations to the „NERD
ontology“, which is manually created schemes mapper for the different entity extrac-
tor website outputs.

The unification of ontologies is also a big topic in the field of life sciences, as the
unification of gene ontologies is needed to create a large database to standardize
the representation of genes and their product attributes. „Gene Ontology: tool for
the unification of biology“ [Ash00] provides a implementation to combine different
gene databases into one by which biologists do neither need to search in all available
informations nor need to get used to the wide variations of different terminology.

At this point we also want to mention GeoReader [SB], a project with the title
„Relation Extraction: Extracting relations from the GeoNames database“ to extract
entities from the geographical database GeoNames [Geo10] and to transform them
into an ontology database. In this thesis we used a modified version of the GeoRe-
ader to create a database with GeoNames information exactly to our necessities.

The second dataset for our experiment is based on the ontology of Freebase [BEP+08],
a huge community-curated database containing more than one billion facts.

1http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

11

Chapter 2 Related Work

In contrast to the presented work in this chapter, our approach operates without
manual interaction during the unification phase and follows the idea of predefined
scores and thresholds for containing certain similarities.

12

3. Unification

This chapter explains the unification algorithm of our program „EntityUnifica-
tion“, the biggest problems we faced and our corresponding solutions.

3.1. Overview

The input are two datasets consisting of ontologies, a formally representation of
knowledge, that get unified. These files provide information about entities and their
relations in a structured way, for example that Freiburg is a city and that it is located
in Germany.

The programm we developed consists of the following steps, which are diagrammed
in figure 3.1. The main phase of the algorithm is step 3 („Unify Entities“) and is
divided into three sub-problems:

1. Pre Check: The pre check determines how likely it is for a pair of entities to
be identical. Only a successful pre check leads to an expensive full check.

2. Full Check: The full check is a complete comparison between a pair of entities
including their additional information and relations.

3. Unify: A successful full check starts the unification, combining the pair to a
single entity.

Figure 3.1.: Steps of Entity Unification program

13

Chapter 3 Unification

3.1.1. Parsing command line arguments

The following options are available (* are required):
• *filenames for both datasets
• *scores filename: File with different scores and thresholds for the unification

algorithm
• output filename
• relationmap filename: defines the map to translate relations to different names

or extend them.

– translate: „has-population“ and „population-count“ are the identical re-
lation with different name, therefore it makes sense to only one name (see
Chap. 3.3.6).

• iterations: count of unfiy-phase iterations between the two databases (see
Punkt 3.4.1).

• debug: enable or disable the debug functionality, which generates debug files
for merged entities and likely equal entities which did not got merged with
their scores

• generate example files: creates example files for config, relationmap and scores
Instead of using lots of command line arguemnts, it is also possible to define a
standard-path to a config file which defines all arguments.

3.1.2. Processing Files

In this step the two database files are parsed, the entities generated and stored in
two maps (one for each database) which are sorted lexicographically. The key for
those maps is the entity ID and the value is a pointer datastructure pointing to the
real entity which contains all available information, i.e. relations, alternate names or
the number of entities pointing to it. The usage of this pointer datastructure makes
it easily possible to leverage a merge between two entities to all occurences of them,
as each entity is represented by its pointer datastructure. If a pointer datastructure
changes its target, i.e. through a merge, every entity which pointed to it will now
also point to the new target. A side benefit of this approach is the reduced memory
allocation as each entity is exactly once in the main memory while all its occurences
are represented by the small pointer datastructure.

3.1.3. Unification of Entities

After the maps got generated and all input data is parsed, the unification phase
starts at the top of the two maps and compares the entities, one of each map.

14

3.2 Preprocessing

Before the expensive full check of two entities is executed, a pre check compares
the entities and only initiates the full check if the two entities are likely equal. The
full check compares all names, alternative names and relations of the entities and
calculates scores on the basis of hits and contradictions. If two entities exceed a
critical treshold, the two entities are getting merged. Different scores and thresholds
make sense, because thereby the user is able to tweak the result or set a weight
on a specific categories, i.e. geographical information more important than naming
equality. Hence it is important that these values can be configured. For the sake
of useability, this is available through the scores config file, which can be modified
without recompiling the program. Regardless of an unification or a termination by a
failed check, the map iterator of the lexicographically smaller ID is getting increased
to move through the maps until both iterators reach the end.

This step will be repeated as many times as defined by the iteration count to make
use of newly created relations which were generated by the mergers.

If the debugging flag is set, two debug files are created during this unification process.
On the one side it generates a file with all entities, which got merged and on the other
the entities which passed the precheck but did not get merged. These debugging files
also include the final score of the comparions and the relations of the entities in a
readable format.

3.1.4. Output and statistics

The final step generates the output of the two unified databases as an ontology file.
It is also possible to highlight merged entities in the output file by a config parameter
to indicate by which entities they were unified. Also statistical information is getting
calculated and reported, including the line counts of the two input files, the entity
count of the two databases and the amount of successfull unified entities.

3.2. Preprocessing

Before the unification process can be started the format of the input databases has
to be adjusted. For the EntityUnification program the input files need to be in
turtle syntax, a notation to represent information by triples, each with a subject, a
predicate and an object delimited by a tabulator. In our example the lines of each
ontology file has the following appearance:

<Entity-ID><TAB><Relation><TAB><Entity-ID or Attribute-Name>

The entity IDs have to be unique within their source database which occasionally
leads to an unreadable or very complex format, for example the following could all
be the ID of the same entity: „Berlin,_(Berlin),_(Germany)“, „Berlin,_(0156q)“,

15

Chapter 3 Unification

or „187w184“. Through their relations the IDs get their semantic meanings, i.e. full
name, location, and geographical coordinates.

3.3. Recognizing similar entities

The main purpose of the unification process is to merge equal entities of different
database to generate a single database without losing information. If the unificati-
on process operates correctly, the newly created database will have more detailed
information about the source entities, i.e. we do not only know that „Wolfgang Ama-
deus Mozart“ is born in „Salzburg“, but also know that „Salzburg“ has a latitude
of 47.48, a longitude of 13.20, a population number of 148,521 and is located in
Austria. But how can we recognize if two entities are equal? This chapter points
out the most important difficulties in detecting equal entities, presents a solution
outline and explains the method of our approach.

3.3.1. Entities with slightly different name

In one database it could be a convention that entities are seperated by their ID which
allows the multiple occurence of the same name. It could also be possible that the
name of the entity is simultaneously its ID, by using unique names. Or it could also
be possible that a database has the naming convention to use just the plain name of
an entity while any other might use a combination of its name and a suitable suffix.
The problem occures to identify two such entities from different naming conventi-
ons, i.e. the equal entities „Freiburg“ and „Freiburg_im_Breisgau,_(Germany)“ or
the unequal entities „Jimmy_Walker,_(Actor)“ and „Jimmy_Walker“ the former
mayor of New York City. For example Freebase [BEP+08] disjoins IDs and names,
as it uses unreadable IDs throughout its complete dataset and maps the name of
an entity with a naming relation, while the knowledge databases DBPedia 1 or yago
[SKW07] use unique names to distinguish between the entities.

But how do we determine whether those entities might be the same regardless of
their different format?

A possible solution would be to compare the edit distance or the length of the longest
substring of the two entity names to determine whether it is likely that the entities
are similar. Another solution would be to compare the entity name prefix until a
specified delimiter (i.e. first space or last comma) or a defined length. As equal
entities from different datasets most likely do not exactly have the same name but
often various similarities in it, it is a good idea to do a substring test (edit distance,
longest substring, prefix, ...) with their names.

1http://de.dbpedia.org/

16

3.3 Recognizing similar entities

EntityUnification: Our approach extracts the name of every entity in the file
processing phase and then identifies entities based on the prefix (the first word) of
their names to determine in the pre check part whether a pair of entities are likely
identical.

3.3.2. Multiple entities with identical name

Many entities in our source databases have the same name and are just seperated
by an unique ID. But every source has its own unique IDs, and its own namespace
and naming conventions. In this way for example, we might have eight entities with
the name „Germany“ in database A, and thirteen in database B, and we need to
find out which „Germany“ from A is equal to a „Germany“ of B.

As there are lots of entities with the same name in every database, we have to
concentrate on the additional information of the entities: their relations. With the
comparison of relations between two possibly equal entities we can observe whether
they have multiple similarities within their relations or even contradictions. Are they
located in the same country or federal state and do they contain the same locations?
Do they have a similar population count? Are the geographical information (latitude,
longitude) equal or totally different? By comparing those attributes and using a
suitable weighting it could be determined how likely it is for two entities to be
equal.

EntityUnification: In our algorithm the procedure to unfiy two entities compares
all entities with identical name, as the entities are stored in a sorted array and
iterated regarding their names.

3.3.3. Same entities with different name

As the databases are created by humans from different countries, it can be the case
that the databases are using different character encoding formats (UTF8, Unicode,
ASCII). A frequently occuring problem are the mutation characters of German,
Austrian and Swiss entity names, for example „Zuerich“ and „Zürich“. Another pro-
blem in this scenario is the fact that many entities have their original name while
others have a translated version, for example „Rheinland-Pfalz“ and „Rhineland-
Palatinate“ or „Hongkong“ and its equivalent chinese name written in Mandarin. A
feasible method to avoid this kind of problem would be to focus on the creation of
the ontologies from the databases, as most databases have multiple character enco-
ding support, i.e. a UTF8 and a ASCII name, or an English version for all entity
names. If this extended information is not available, it could be a possible solution
to generate a translation map, with the purpose to translate entity names into a
specific language (i.e. English) to have a constistent naming convention throughout
the ontologies.

17

Chapter 3 Unification

EntityUnification: In our experiment we relied on the fact that our datasets had
an UTF8 version of every name, however it would be also possible to extend the
relationmap file (see Chap. 3.1.1) to also translate entity names.

3.3.4. Entities with sparse relations

Sometimes entities have only a few or no relations at all, which makes it difficult to
match them to entities with equal name. Another example in this problem category
is the case that entities have the same name but completely different relations,
i.e. one location has only geographical information while the comparator has only
information about people who were born there. This scenario makes it a problem
very difficult to merge, as we can not be sure whether the entities are actually the
same or completely different.

EntityUnification: Our approach only merges entities if they exceed a critical
threshold. Entities with sparse relations still can be merged if the unification phase
iterates multiple times, as it can happen that the relations of those entities were
merged in previous iterations expanding the sparse information.

3.3.5. Different entitites with similar name and similar relations

As the databases could contain special places, i.e. „Berlin_Central_Station“ or
„New_York_City_Madison_Square_Garden“, it is also feasable that those places
share a great amount of information as their location. If „Berlin_Central_Station“
has the equal information as „Berlin“, it is possible that both get unified.

A solution which can identify „special“ places could avoid such problems. It would
also be a solution to compare the number of words of two entities, as „Berlin_Cen-
tral_Station“ has more words as the city.

EntityUnification: We handle this problem by comparing the number of words
in the names of the entities in our pre check. If the number reaches a specified
threshold, which also can be defined in the config file, the pre check fails.

3.3.6. Relations with different name

It is an often occuring problem that a relation in one database has a different
name as in another, i.e. „located-in“ and „located“. Also it appears that a specific
relation in two different databases is reversed, i.e. „Freiburg located-in Germany“
and „Germany contains Freiburg“. These two relations carry the same meaning but
are expressed in a reversed way. A selfmade map could solve this kind of problem
as a user could rename relations with different names.

18

3.4 Unification

EntityUnification: In our algorithm those relations can be mapped to the same
name using the relationmap config file. This config file allows the following three
actions:

1. Renaming a relation to have identical relation names:

a) f(relationnameold) = relationnamenew, i.e. „located“ to „located-in“

2. Renaming a relation and reverse its subject and object to have an identical
format:

a) f(subject, relationnameold, object) = object relationnamenew subject, i.e.
„Freiburg located-in Germany“ to „Germany contains Freiburg“.

3. Add another relation to generate more information:

a) f(subject, relationnameold, object) = [subject relationnameold object, object relationnamenew subject],
i.e. „Freiburg located-in Germany“ adds also „Germany contains Frei-
burg“ to our knowledge base.

3.3.7. Mistakes in the databases

As many entries of the popular ontology databases are mostly made by hand, it
is possible that those entries contain mistakes or duplicates with various names. A
person who posted an entry into the database might accidently interchange two en-
tities or make a minor spelling mistake at an important attribute. In the unification
process it could be a solution to bypass such problems by comparing the ratio bet-
ween positive and negative comparisons. If an entity has a huge amount of positive
comparisons between another and only a single contradiction, it still might be the
same entity.
EntityUnification: Through a suitable choice of scores and thresholds, this pro-
blem can be reduced as minor mistakes do not directly lead into a false check.

3.4. Unification

After the command line arguments are parsed and the two input databases proces-
sed, the unification phase starts to compare the two maps of entities. These maps
got created during the file processing phase and consist of the entity ID as the key
and an entity pointer as the value. These entity pointer datastructer contains a poin-
ter to the real entitiy and ensures that each entity is stored only once in the main
memory as multiple instances of an entity just refer to the entity pointer. The entity
datastructure has a relation map with the relation name as the key, i.e. „located-in“
or „has-name“, and an array of entity pointers as the value. This approach makes
it very easy to merge two entities, as only the target of the datastructure has to be

19

Chapter 3 Unification

redirected to a new real entity with the effect, that also all relations which pointed
to that entity pointer will now point to the new target. These entity datastructures
are also able to store further useful information, i.e. the number of entities pointing
to it or the number of rearrangements.
During the unification phase the algorithm has to accomplish many comparisons
and each can have its individual threshold and weight for the decision wether two
entities are equal. As for some comparisons it is sufficient that they do not fail, others
need to reach a specific threshold value to return a positive result. To handle those
complexe decision the unification algorithm is based on scores, which are aggregated
and subtracted in the different comparisons. These score values and thresholds are
stored in an external config file and can be manipulated and tweaked by the user to
enhance the unification result or to set a focus on a specific section of the entities.
This config file also makes it possible to tweak the scores without recompiling the
program. The possible scores and thresholds which can be redefined by the user
including a short description and their standard values can be found in the appendix.

3.4.1. Unification Phase

The unification process starts by having two iterators, one for each map. Those are
getting increased depending on the lexicographical comparison between the entity
IDs they are pointing to, with the purpose to only compare two entities which have
a similar name and not to inspect every possible pair. Instead of doing a comple-
te examination on every pair of entities, as this is a very expensive operation, a
pre check first determines whether two entities are likely equal. This pre check is a
cheap method and consists of a prefix comparison (first word of the entity name)
and a comparison of the number of words of each entity name. The „number-of-
words“ comparison tries to eliminate the problems of special places described in
chapter 3.3.5. A successfull pre check induces the full entity check which makes a
deep comparison between the two entities, considering their full names and all their
relations.
The complete check of two entities is started by a successful pre check and makes
a deep comparison. It examines the information of both entities and computes a
score based on different values and thresholds from the scores config file. If a certain
overall threshold is reached, the two entities are considered equal and are getting
merged.
The merging procedure unifies the two entities E1 and E2 into a single one. Each
entity has a relation set RE, that maps relations that have E as an subject to the
set of the corresponding objects:
RE = {(ri.name, f(ri)) : ri ε relationsout(E)},
where ri is the set of relation targets, i.e. f(ri) = { y : (E, y) ε Ri}.

20

3.4 Unification

For example:
RE1 = {(”located − in”, {E2, E3}), (”has − latitude”, {E5}), . . .}

with E1.name = Berlin, E2.name = Germany, E3.name = Baden−Württemberg, E5.name =
13.24.

The merging procedure consists of the following steps:
1. Setting a merge flag to indicate that this entity was merged:

a) E1.merged = true

2. Unifying the relations, such that the relationmap of E1 is the unified set:

a) RE1,new = RE1,old ∪ RE2

3. Adding the ID and name of the second entity to the „other-IDs“ array of the
first:

a) E1.others_IDsnew = E1.others_IDsold ∪ E2.ID.

4. Reallocating the entity pointer datastructure of E2 to point to E1:

a) Pointer(E2).target = E1.

5. Deleting E2.
By rearranging the pointer it is guaranteed that all entities that previously pointed
to the second entity, now are going to point to the first. After the complete check
or a failed pre check one iterator gets incremented until the end of both maps is
reached, which ends the unification phase.
To exploit the knowledge of newly connected entities, which are created by the unions
of the unification process, the whole unification phase can be executed repeatedly
as defined in the config file. Through the further acquired information about the
entities, the unification process can do more precise and accurate comparisons in the
following rounds as more relations are given. For example the following datasets:

Dataset 1 Dataset 2
Berlin_123

relation value
longitude 52.31
latitude 13.24

Berlin_456
relation value

located-in Germany
located-in Berlin

Berlin_789
relation value

located-in New Hampshire
located-in USA

Berlin_000
relation value

longitude 52
latitude 13

located-in Germany

21

Chapter 3 Unification

In the first iteration, only Berlin_123 and Berlin_000 are merged, because the other
pairs have no suitable relations. Through the merge it would be possible in the second
iteration to unify Berlin_123 with Berlin_456, as Berlin_123 now also contains the
„located-in“ information.
Another example would be the case that set 1 contains a „Berlin“ and a „Germany“
as well as set 2, with each „Berlin“ located in a different „Germany“. In the first ite-
ration the Germany’s are merged, but the Berlin’s do not. Through the unification
of „Germany“, both „Berlins“ are now located in the same „Germany“ and therefore
would get merged in the second iteration.

With the help of the optional debug files, the user is able to review the steps of the
unification process as a debug file is created for all entities which passed the pre
check and did get merged and one for the entities which passed the pre check but
did not get merged. In those files the entities are reported with all their relations
and with all the IDs of entities they were merged with.
After the iterations of the unification phase is completed, the algorithm iterates
through both maps and generates the turtle syntaxed output file, which has its
duplicates eliminated and is lexicographical sorted. Through a config parameter it
is possible to highlight unified entities in the output file with a flag.

22

4. Evaluation

This chapter will present how efficient our algorithm works using some experimental
results. All algorithms were implemented in C++ and were performed on a machine
with a Intel i5-3570k @ 3.40 GHz processor and 2 GB RAM running Ubuntu 13.04.
The program was compiled using gcc version 4.7.3 with -O3 flag and C++0x support.
For the evaluation we created two datasets which satisfy the naming conditions. The
first is based on the location based data from Geonames [Geo10] and was created
with the GeoReader program1, and the second set is based on the location relevant
data from Freebase [BEP+08].

4.1. Results

The following tables shows information regarding the two datasets used in this
chapter:

Dataset Number of Lines Number of Entities Number of Triple Filesize
Geonames 813,489 383,421 813,489 37 MB
Freebase 4,710,584 3,006,213 4,710,584 244 MB

4.1.1. Performance

The following table present the timings and unification number of our algorithm
executed with different config parameters. The elapsed average time refers to the
unification phase and was calculated using the average of five repetitions. The uni-
fication percentage relates to the positive hits of the smaller dataset.

id Debug Iterations Avg. elapsed time Unification count Unification
percent

1 off 1 15.21 s 161,746 42.18 %
2 off 2 22.68 s 197,500 51.50 %
3 off 3 27.98 s 203,694 53.12 %
4 off 20 64.44 s 205,897 53.69 %
5 on 1 2.22 min 161,746 42.18 %
6 on 2 5.13 min 197,500 51.50 %

1http://stromboli.informatik.uni-freiburg.de/student-projects/anton+marius

23

Chapter 4 Evaluation

Timings for the other phases can be found in the following table:
Phase Average elapsed time

Processing files 32.59 s
Generating output 7.15 s

4.1.2. Quality

For quality evaluation we compared the debug files of our program with the parame-
ters from the performance evaluation with ID 6 to check which entities were and were
not merged. As both debug files are tremendous, it was not possible for us to check
every comparison. The file containing the entities which were merged has 91,489,868
lines, while the file with the entities which were not merged has 306,056,416 lines.
We compared:

• popular entities (i.e. „Freiburg im Breisgau“, „Germany“, „New York City“)
• popular regions (i.e. „Freiburg Region“, „Baden-Württemberg“, „New York“)
• selected entities (i.e. „Riga“, „Daugavpils“, „Breisach“, „Neustadt“)
• 30 randomly selected entities which were merged
• 30 randomly selected entities which were not merged despite a positive pre

check
Within this comparisons we reviewed the scores of the entities, their relations and
the different names based on the debugging files and identified no direct error. With
an unification percentage of over 53.69% of the smaller ontology we achieved a very
good result, though it is not perfect yet. Only two not satisfying cases were found,
which makes it possible to deeply investigate them:

1. The unification of the city „Freiburg“ and the region „Freiburg“. The region
and the city got merged, as they share a lot of equal information in the two
datasets: same longitude, latitude and same „located-in“ relations and even
have confusing names among the datasets, as in GeoNames „Freiburg“ is the
city and „Freiburg Region“ is the region, while in Freebase „Freiburg im Breis-
gau“ is the city and „Freiburg“ the region.
This case can be seen as a minor mistake or as an intentionaly unification
because a major city and its urban area often share the same name and are
often mentioned exchangeable.

2. The lack of the unification of „Rheinland-Pfalz“ and „rhineland-palatinate“.
As the one dataset uses native names, the other uses the English alternatives,
it is not possible for the pre check to identify equality between those different
namings. For future work it would be easily possible to extend the parsing
phase of the algorithm with a function to translate entity names.

All other entities which got retrieved and reviewed were correct, contained no mis-
information and had no loss of information.

24

4.2 Potential problems

4.2. Potential problems

As the occured problem with „Freiburg“, the city and the region was discovered
during the evaluation, more minor mistakes of this kind could possibly appear. If
two entities share a lot of equal information and have no contradiction, it is likely
that they are getting unified. The major problem of this case is that the Region
often has the same geographical information as the city, which leads to a excessive
score and an unification.
The other occuring problem is based on the translation of entity names: as a dataset
could have translated names, any other could have natives names. This makes it a
very difficult problem to find equal entities, as it is not feasible to compare every
tuple of entities.
The major problem of those cases is wrong information stored in the datasets. As
a completely wrong geographical information of an entity could lead to a failure
during the comparisons and therefore the score might not reach the threshold for
an unficiation, it could also lead to a not intended unification. Missing information
can be identified as the major problem to influence the algorithm, as it can lead to
inaccurate comparisons and false unification.

25

5. Conclusion

In this work we have presented an approach for entity unification with the goal to
improve semantic search. That approach’s application was demonstrated using the
programm EntityUnification. Our work revealed several major problems of the
unification process and suggested suitable solutions. We compared different approa-
ches and developed a modular and customizable programm to solve the problem of
combining different datasets into a single one. In our experiment with Geonames
and Freebase based datasets, we examined the performance and quality of our ideas
and pointed out possible problems.

5.1. Future Work

In the following we want to summarize a list of possible improvements:
1. To do a deeper evaluation it is highly recommended to generate a sufficient

ground truth and evaluate the precision and recall of the algorithm.
2. With knowledge in the field of automated parameter tuning it would be a great

idea to further improve the scores of the config file to achive better results in
the unification phase.

3. As the algorithm is fast in this version, it would be applicable to create a more
complexe pre and full check.

4. Instead comparing two entities per chunk, it would be possible to gather pos-
sibly equal entities into sets and than generate scores inside those sets. This
approach would allow to compare the scores within the possible candidates of
equal entities.

5. It would be feasable to develop an algorithm in the merging step of the algo-
rithm to not unify the right entity to the left, but rather make it depended on
an attribute of the entities, i.e. their size.

6. To avoid the translation errors mentioned in chapter 4.1.2 it would be a possi-
ble solution to create a translation map for the file processing phase to trans-
form all entity names to the same convention.

7. To make the algorithm even faster it would be feasible to do the relation
comparisons in a multi-threaded enviroment, as those computations can be
calculated disjoint as they do not depend on each other.

27

29

Chapter A Appendix

A. Appendix

A.1. Score description

Name Explaination Standard
Value

t_number_of_words Threshold for the maximal word
count difference between two entity
names which are compared in the

pre check

3

t_score_threshold The score which is needed between
two entities for a unification

6

s_entity_name The score granted for the exactly
same entity name

4

s_loc_in_name The score for two entities which are
located in the same location

determined by an equal name

2

s_loc_in_prefix The score for two entities which are
located in the same location

determined by an equal prefix

1

t_loc_in_ratio_bonus Threshold for the ratio of the
shared locations of two entities to

gain a bonus

0.6

s_loc_in_ratio_bonus Bonus granted if the shared ratio
threshold is reached

1

t_geo_max/med/min Difference allowed between two
geographical coordinates to gain
maximal/medium/minimal score

0.01/0.2/2.1

s_geo_max/med/min Maximal/Medium/Minimal score
possible through the comparison of

geographical coordinates

3/1/0

t_geo_false Difference between two
geographical coordinates which

causes a comparison failure

2.1

s_geo_false Score for getting a geographical
coordinates failure

-1

t_geo_both_bonus Score needed between the sum of
the longitude and latitude to gain a

bonus

6

30

A.1 Score description

Name Explaination Standard
Value

s_geo_both_bonus Bonus-score for sharing the equal
longitude and latitude

2

t_populati-
on_max/med

Threshold for the difference
between the population number to

gain a max/med score

3500/10000

s_populati-
on_max/med

The maximal/medium score gained
by being within the population

threshold

2/3

t_population_false Difference between the population
of two entities to get a failure

comparison

25000

s_population_false Score for getting a population
comparison failure

-1

s_misc_relation_name Score granted for sharing another
relation with the same target name

3

31

Bibliography

[Ash00] Ashburner, M.: Gene Ontology: Tool for the unification of biology. In:
Nature Genetics 25 (2000), S. 25–29

[BEP+08] Bollacker, Kurt ; Evans, Colin ; Paritosh, Praveen ; Sturge, Tim
; Taylor, Jamie: Freebase: a collaboratively created graph database
for structuring human knowledge. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. New York,
NY, USA : ACM, 2008 (SIGMOD ’08). – ISBN 978–1–60558–102–6, S.
1247–1250

[Geo10] GeoNames: GeoNames Geographical Database. 2010. – Last access on
Dez 2008 at: http://www.geonames.org/export

[NM00] Noy, Natalya F. ; Musen, Mark A.: PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment, 2000, S. 450–455

[RT12] Rizzo, Giuseppe ; Troncy, Raphaël: NERD: A Framework for Unifying
Named Entity Recognition and Disambiguation Extraction Tools. In:
EACL, 2012, S. 73–76

[SB] Stepan, Anton ; Bethge, Marius. Relation Extraction: Extracting re-
lations from the GeoNames database. http://stromboli.informatik.
uni-freiburg.de/student-projects/anton+marius

[SKW07] Suchanek, Fabian M. ; Kasneci, Gjergji ; Weikum, Gerhard: Yago:
A Core of Semantic Knowledge. In: 16th international World Wide Web
conference (WWW 2007). New York, NY, USA : ACM Press, 2007

33

http://stromboli.informatik.uni-freiburg.de/student-projects/anton+marius
http://stromboli.informatik.uni-freiburg.de/student-projects/anton+marius

	Contents
	Acknowledgments
	Zusammenfassung
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of this Thesis

	2 Related Work
	3 Unification
	3.1 Overview
	3.1.1 Parsing command line arguments
	3.1.2 Processing Files
	3.1.3 Unification of Entities
	3.1.4 Output and statistics

	3.2 Preprocessing
	3.3 Recognizing similar entities
	3.3.1 Entities with slightly different name
	3.3.2 Multiple entities with identical name
	3.3.3 Same entities with different name
	3.3.4 Entities with sparse relations
	3.3.5 Different entitites with similar name and similar relations
	3.3.6 Relations with different name
	3.3.7 Mistakes in the databases

	3.4 Unification
	3.4.1 Unification Phase

	4 Evaluation
	4.1 Results
	4.1.1 Performance
	4.1.2 Quality

	4.2 Potential problems

	5 Conclusion
	5.1 Future Work

	A Appendix
	A.1 Score description

	Bibliography

