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Abstract. This is a quick survey about efficient search on a text corpus
combined with a knowledge base. We provide a high-level description
of two systems for searching such data efficiently. The first and older
system, Broccoli, provides a very convenient UI that can be used without
expert knowledge of the underlying data. The price is a limited query
language. The second and newer system, QLever, provides an efficient
query engine for SPARQL+Text, an extension of SPARQL to text search.
As an outlook, we discuss the question of how to provide a system with
the power of QLever and the convenience of Broccoli. Both Broccoli and
QLever are also useful when only searching a knowledge base (without
additional text).
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1 Introduction

This short survey is about efficient search on a text corpus combined with a
knowledge base. For the purpose of this paper, a knowledge base is a collection of
subject-predicate-object triples, like in the following example. Note that objects
can also be strings, called literals, and that such literals can contain a qualifier
indicating the language.

<Neil Armstrong> <Space Agency> <NASA>
<Neil Armstrong> <Place of birth> <Wapakoneta>
<Neil Armstrong> <Date of birth> ”1930-08-05”
<NASA> <Slogan> ”For the Benefit of All”@en

Knowledge bases are well suited for structured data, which has a natural rep-
resentation in the form above. With information cast in this form, we can ask
queries with precise semantics, just like on a database. Here is an example query,
formulated in SPARQL, the standard query language on knowledge bases. The
query asks for astronauts and their agencies. The result is a table with two
columns. If an astronaut works for k agencies, the table has k rows for that
astronaut.
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SELECT ?x ?y WHERE {
?x <is-a> <Astronaut> .
?x <Space Agency> ?y
}

Note that it is crucial that in the knowledge base the same identifier is used
to denote the same entity in different triples. This is easier said than done:
in practice, knowledge bases are often co-productions of large teams of people,
and it is not trivial to ensure that different people use the same identifier when
referring to the same entity.

Much of today’s information is available only in text form. The main reasons
for this are as follows. First, text as a direct representation of spoken language
is a very natural form of communication for humans and it requires extra ef-
fort to convert a given piece of information into a structured form. Second, as
a particular consequence of the first reason, especially current and expert infor-
mation is much more likely to be available in text form than in structured form.
Third, not all information can be meaningfully cast in the above mentioned triple
form. For example, consider the following sentence, which, among other pieces
of information, expresses that Neil Armstrong walked on the moon:

On July 21st 1969, Neil Armstrong became the first man to walk on the Moon.

The statement that a certain person walked on the moon is rather specific and
applies to only few entities. Casting this into triple form might be reasonable
for statements of historical importance. Doing it for all statements that are
mentioned in a large text corpus, would lead to a knowledge base that has hardly
more structure than the text corpus itself. Also note that the larger the set of
predicates becomes, the harder it becomes to maintain the above-mentioned
property of using consistent identifiers.

It is therefore very natural to consider both knowledge bases and text for
search. The simplest way to achieve this is to query both data sets separately
and return the results as distinct result sets (provided that matches were found).
This is essentially what the big commercial search engines currently do. In this
paper, we consider a more powerful search, which considers the knowledge base
and the text in combination. In the following, Section 2 explains the nature of
this combination. Section 3 presents a system, called Broccoli, which enables
a user to interactively and conveniently search on such a combined data set.
Section 4 presents SPARQL+Text, a powerful extension of SPARQL, along with
QLever, an efficient query engine implementing this extension. Section 5 briefly
discusses how to combine the power of a system like QLever with the convenience
of a system like Broccoli.

Both Broccoli and QLever are available online. A demo of Broccoli is avail-
able under http://broccoli.cs.uni-freiburg.de. A demo of QLever is avail-
able under http://qlever.cs.uni-freiburg.de. The source code of QLever
is available under http://github.com/ad-freiburg/qlever.

http://broccoli.cs.uni-freiburg.de
http://qlever.cs.uni-freiburg.de
http://github.com/ad-freiburg/qlever
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2 Combining text and knowledge base data

A natural way to connect a given text corpus to a given knowledge base is to
identify which pieces of text refer to an entity from the knowledge base, and
exactly which entity is meant in each case. These problems are known as named
entity recognition (NER) and named entity disambiguation (NED). For example,
consider the following sentence:

Buzz Aldrin joined Armstrong and became the second human to set foot on the
Moon.

Underlining the correct tokens is the NER problem. This entails figuring out the
extent of the text used to refer to one entity. This can be just a single word, but it
can also be a sequence of two or more words. Identifying which entities from the
knowledge base the underlined pieces of text refer to is the NED problem. Note
that there are many entities which could be referred to by the word Armstrong.
Figuring out the correct entity can be a hard problem. In the sentence above, the
other words in the sentence make it pretty clear that Neil Armstrong is meant.
In the ERD’14 challenge [10], the best approach achieved an F-measure of 76%
[12]. A quick overview of the state of the art in NER and NED can be found in
a recent survey [7, Section 3.2.2]. In the following, we simply assume that the
NER+NED problem has been solved satisfactorily and we thus have a text and
a knowledge base linked in the way described.

With a text corpus and a knowledge base linked in this manner, we now
have a notion of co-occurrence of an entity from the knowledge base with one
or more words from the text corpus. The two systems described in Sections
3 and 4 allow to specify such co-occurrences as part of a query. For example,
both systems allow a query that searches for entities in the knowledge base with
the profession astronaut (that is, astronauts), which somewhere in the text co-
occur with a word starting with walk (walk, walked, walking, ...) and the word
moon. The scope of the co-occurrence is an additional parameter: for example, we
can consider co-occurrence within the same sentence or co-occurrence within the
same grammatical sub-clause of a sentence; this is explained further in Section 3.
Note how such a co-occurrence is a good indicator that the respective astronaut
indeed walked on the moon. The more such co-occurrences we find, the more
likely it is. The examples given in the next sections will clarify this further.

To get a feeling for the amount of data which these systems can handle,
here are two concrete datasets, which have been used in the evaluation of these
systems.

Wikipedia+Freebase Easy: the text from a dump of the English Wikipedia
with links to a curated and simplified version of Freebase called Freebase Easy [2].
In particular, all entities and predicates in Freebase Easy are denoted by unique
human-readable names, like in the example triples at the beginning of the intro-
duction. The dataset is available at http://freebase-easy.cs.uni-freiburg.
de. The dimensions of this dataset are: 360,744,363 triples, 2,316,712,760 word
occurrences, 494,253,129 entity links.

http://freebase-easy.cs.uni-freiburg.de
http://freebase-easy.cs.uni-freiburg.de
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Clueweb+Freebase: the text from the Clueweb12 collection [11] with links to
the latest complete version of Freebase (see below). Freebase uses alphanumerical
IDs as identifiers for entities (for example, fb:m.05b6w for Neil Armstrong) and
human-readable strings with a directory-like structure as identifiers for pred-
icates (for example, fb:people.person.profession for the predicate that links a
person to their profession).1 The dimensions of this dataset are: 1,934,771,338
triples, 32,281,516,161 word occurrences, 3,263,384,664 entity links.

Freebase was initiated by a company called Metaweb in 2007. The company was
eventually acquired by Google in 2010. In August 2015, the Freebase dataset
was frozen. Wikidata is a general-purpose knowledge base which is very similar
in spirit to Freebase [15]. Wikidata has grown steadily but slowly until August
2017. It has then almost tripled in size over the next 12 months. A full dump of
Wikidata from May 2018 contains 4,157,785,636 triples, of which 1,204,269,433
have a literal as an object. Wikidata uses numerical IDs both for entity and
predicate names (for example, wd:Q1615 for Neil Armstrong and wdt:P106 for
the predicate that links a person to their profession). An instance of the query
engine described in Section 4 running on the complete Wikidata is available
under http://qlever.cs.uni-freiburg.de.

3 Broccoli: interactive search on a knowledge base
combined with a text corpus

Search on a knowledge base alone is not easy, and in combination with text,
the task becomes even harder. The main reason is that such a search requires
knowledge of the names of the entities and the predicates in the knowledge base,
as well as on how the information is structured in the knowledge base in the first
place. This is hard even when the identifiers are human-readable (because there
are so many of them, and names are ambiguous). It is complicated further when
the identifiers are just numerical (or alphanumerical) IDs.

Another problem is that query languages like SPARQL have no concept of a
ranking by relevance, as we know it from text search engines. Instead, a SPARQL
query primarily delivers a set of entities or table rows, and any desired order
needs to be explicitly specified. For some queries, there are natural predicates
by which the data can be ordered. For example, for a list of cities, an order by
descending population is natural. For other queries, there is no such predicate.
For example, for a list of people, one probably wants to see the better known
individuals first, but knowledge bases usually do not have predicates expressing
the relative “popularity” of an entity.

Broccoli is a system that tries to address all of these problems. Broccoli
guides the user in incrementally constructing a query by providing suggestions
for extending the query after each keystroke and by visualizing, at each step of
the construction process, the current query and the current result in an intuitive

1 The identifiers are actually URIs and the prefix fb:stands for the common beginning
of these URIs. See Section 5 for more explanation of this.

http://qlever.cs.uni-freiburg.de
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way. Figure 1 provides a screenshot of the system in action for a particular query.
The caption of that figure provides some additional explanations on the various
components and features. Note that Broccoli refers to entities as instances and
predicates as relations. Broccoli also knows classes, which are simply groups
of entities with the same type, according to a fixed type relation, which every
general-purpose knowledge base has. The semantics of the query should be self-
explanatory; if not, the formalization to SPARQL+Text in Section 4 should help
to clarify this. A demo of Broccoli is available online at http://broccoli.cs.

uni-freiburg.de.

Words

Buzz Aldrin (34)

Neil Armstrong (58)

Pete Conrad (23)

Instances:

1 - 3 of 3

Traveler (7)

Spaceflight Person (8)

Person (6)

Classes:

1 - 3 of 28

Neil Armstrong

Ontology: Neil Armstrong

Neil Armstrong: is an astronaut; born on date August 5, 1930.

Document: Kevin Foster (Entertainer)

Foster commented: “Now I know how Neil Armstrong felt when he

walked on the moon.”

Buzz Aldrin

Ontology: Buzz Aldrin

Buzz Aldrin: is an astronaut; born on date January 20, 1930.

Document: Upper Montclaire, New Jersey

Notable current and former residents of Upper Montclaire include:

Buzz Aldrin, Astronaut, second man to walk on the moon.

Your Query:

Astronaut

occurs-with walk* moon

born-on-date

Hits: 1 - 2 of 3

<= 1930

occurs-with <Anything>

Relations:

1 - 3 of 7

Is-citizen-of <Country>

Born-in <Location>

(3)

(3)

type here to extend your query …

Fig. 1. A screenshot of Broccoli in action for an example query. The box on the top
right visualizes the current query as a tree. The large box below shows the hits grouped
by instances that match the query root and ranked by relevance. Comprehensive ev-
idence for each hit is provided. For matches in the text corpus, a whole sentence is
shown, with parts outside of the matching semantic unit (this is explained in the text)
greyed out. On the left, there are suggestions for classes, instances and relations, which
can be used to extend or narrow down the query. Suggested classes are parent classes of
the entities from the current result. Relations and instances are context sensitive with
respect to the current query. That is, all suggestions, if clicked, would lead to at least
one hit. There are no word suggestions in the screenshot, because the search field on
the top left is empty at this point of the query construction process. As soon as letters
are typed, word suggestions appear and the other suggestions are narrowed down to
those matching the typed prefix.

The design and realization of Broccoli was a complex endeavour, which re-
quired several person-years. The architecture and the technology behind Broccoli
is described in a series of papers. The system architecture has first been described
in [1]. The index data structures and algorithms used for the interactive query
processing and suggestions are described in [4]. The curation and simplification

http://broccoli.cs.uni-freiburg.de
http://broccoli.cs.uni-freiburg.de
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of the Freebase dataset is described in [2]. The engineering behind the public
demo is described in [3]. The relevance scores which form the basis of the ranking
are described in [6]. The natural language processing used to split the text into
semantic units is described in [8].

Broccoli does what it does extremely well. The convenience and the high
speed come at a price though. Here are the most important shortcomings of
Broccoli:

1. Broccoli only supports tree-shaped SPARQL queries. Many typical queries
are tree-shaped, but by far not all.

2. Broccoli only supports SPARQL queries with one variable in the SELECT
clause. Again, many typical queries have this property, but by far not all.

3. Broccoli has no special treatment for n-ary relations, that is, relations which
connect more than two entities. Section 5 gives an example of such a query
on Wikidata.

4. Broccoli does not support SPARQL queries with predicate variables (that is
connecting two entities, which themselves may be variables, by an unknown
predicate).

5. Broccoli has no query planner. Since the queries are constructed incremen-
tally, by adding one part of a triple at a time, the order of the basic operations
(index scans and joins, see Section 4), is completely determined by the way
the query is constructed.

6. Broccoli uses a non-standard API. The original focus of the project was on
usability aspects and efficiency, not on the underlying query language.

The query engine presented in the next section addresses all of these shortcom-
ings.

4 QLever: a query engine for SPARQL+Text

QLever is a query engine for what we call SPARQL+Text. SPARQL+Text
contains standard SPARQL, so QLever can also be used to process standard
SPARQL queries (and quite efficiently so, see below). SPARQL+Text queries
operate on a knowledge base linked to a text corpus, as explained in Section
2. It is assumed that the text has been segmented beforehand. These segments
can be the semantic units of the sentences (as briefly explained in Section 3), or
simply the sentences of the text. The search results are best if the segmentation
is such that co-occurrence in the same segment has a semantic meaning, as in
the “astronauts who walked on the moon” example above.2

Specifically, SPARQL+Text extends SPARQL by two built-in predicates
ql:contains-entity and ql:contains-word. Here is an example query, which is simi-
lar to the query from Figure 1 (but asking for the space agencies of the astronauts
instead of restricting their birth date).

2 We sweep under the rug here that this is not a matter of co-occurrence alone. For
example, a text segment may additionally contain the word not and thus negate the
meaning. There are different approaches to handle this which we do not discuss here.
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SELECT ?astronaut ?agency TEXT(?text) WHERE {
?astronaut <is-a> <Astronaut> .
?astronaut <Space Agency> ?agency .
?text ql:contains-entity ?astronaut .
?text ql:contains-word ”walk∗” .
?text ql:contains-word ”moon” .
}
ORDER BY DESC(SCORE(?text))

The last three triples in the WHERE clause express that there is a segment of
text, denoted by ?text, which contains a mention of an entity ?astronaut (which
was identified as part of the NER+NED preprocessing described in Section 2)
as well as a word starting with walk and the word moon. With a reasonable seg-
mentation, a large number of such segments means that the respective candidate
is indeed an astronaut who walked on the moon. On the two collections listed
in Section 2, this query already gives very good results when the segments are
simply sentences. The TEXT(?text) yields a third column in the result table,
containing a matching text segment for each match for the remaining variables
in the SELECT clause.3 The final ORDER BY ... clause orders the results by
the number of matching text segments, results with most matches first.

The details of the query engine behind QLever and the results of an ex-
tensive evaluation are provided in [5]. The source code and documentation is
available under http://github.com/ad-freiburg/qlever. A front-end for en-
tering SPARQL+Text queries on the datasets from Section 2 as well as on the
complete Wikidata is available under http://qlever.cs.uni-freiburg.de.

We briefly provide the main ideas and results in a nutshell. The basic idea of
the index structure behind QLever is similar to that of Broccoli, but with various
engineering improvements. For example, the index data structures are laid out
(with slight redundancy) such that all basic operations (such as obtaining a
range of items from an index list) can efficiently read only exactly that data
which is actually needed for the operations (for example, only the subjects from
a range of triples). Due to these improvements, QLever is 2-3 times faster on
queries which can also be processed by Broccoli.

Unlike Broccoli, QLever has a full-featured query planner, suited for arbi-
trary query graphs and with a special treatment of the two special ql:contains-
... predicates. The query planner finds the query execution plan with the best
estimated cost, using dynamic programming. For accurate cost estimations, for
each subquery not only the result size is estimated, but also the number of dis-
tinct elements in each column. This is crucial for a good estimation of the result
size of the join operations. Computing good estimates for the result size and the
number of distinct elements in each column for each of QLever’s basic operations
(including the operations involving text search) is not trivial.

3 The number of matching text segments shown (per match for the remaining variables
in the SELECT clause) can be controlled with a TEXTLIMIT <k> clause. The
default is TEXTLIMIT 1.

http://github.com/ad-freiburg/qlever
http://qlever.cs.uni-freiburg.de
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The performance improvements over existing SPARQL engines are consid-
erable. Even for SPARQL queries without a text search component, QLever is
several times faster than existing query engines like Virtuoso [14] (widely used in
the commercial world) and RDF-3X [13] (a state-of-the-art research prototype)
for most queries. On SPARQL+Text queries, which can only be simulated on
query engines like Virtuoso and RDF-3X, QLever is faster by several orders of
magnitude.

5 Outlook

QLever supports SPARQL+Text, a powerful extension of SPARQL to integrate
search on a given text corpus linked to a given knowledge base. In particular,
QLever addresses all the shortcomings of Broccoli listed at the end of Section
3. The price is that there is currently no UI that enables the construction of
arbitrary SPARQL+Text queries with the same level of convenience as Broccoli.

To illustrate the need for such a UI, let us look at one more query. It is a
SPARQL query on Wikidata for computing a table of all astronauts and where
they studied and for which degree. This query involves a 3-ary predicate (linking
a person to a university and the degree) and it is already surprisingly complex.
What adds to the complexity is that Wikidata uses IDs for both entities and
predicates and that we need to use a special predicate for obtaining the human-
readable labels and additional FILTER clauses to get the labels only in one
language instead of hundreds. Note that this query does not even involve a text
search part (we could, however, just add the two text search triples from the
query above). The prefixes at the beginning are abbreviations for the common
prefixes of Wikidata’s IDs, which are URIs. For example, in the SPARQL query
below, wd:Q11631 is equivalent to <http://www.wikidata.org/entity/Q11631>.

PREFIX wd: <http://www.wikidata.org/entity/>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX p: <http://www.wikidata.org/prop/>
PREFIX pq: <http://www.wikidata.org/prop/qualifier/>
PREFIX ps: <http://www.wikidata.org/prop/statement/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?astronautLabel ?universityLabel ?degreeLabel
WHERE {

?astronaut wdt:P106 wd:Q11631 .
?astronaut rdfs:label ?astronautLabel .
?astronaut p:P69 ?educatedAt .
?educatedAt ps:P69 ?university .
?university rdfs:label ?universityLabel .
?educatedAt pq:P512 ?degree .
?degree rdfs:label ?degreeLabel .
FILTER langMatches(lang(?astronautLabel), ”en”)
FILTER langMatches(lang(?universityLabel), ”en”)
FILTER langMatches(lang(?degreeLabel), ”en”)
}
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Enabling such queries, or more complex ones, without requiring knowledge of
a particular query language or of the particularities of the knowledge base is a
challenging problem. One line of attack is to try to generalize the UI of Broccoli
to SPARQL+Text. This looks feasible, but it remains to be seen how practical
such a UI would be when queries become more complex. Another line of attack
is to automatically translate questions in natural language to SPARQL+Text
queries as the above. This has been proven very hard already for simple SPARQL
queries, for example see [9]. A compromise might be a hybrid approach, which
allows an incremental construction of such a query via elements formulated in
natural language.
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1. Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Broccoli: Semantic full-text
search at your fingertips. CoRR abs/1207.2615 (2012)
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