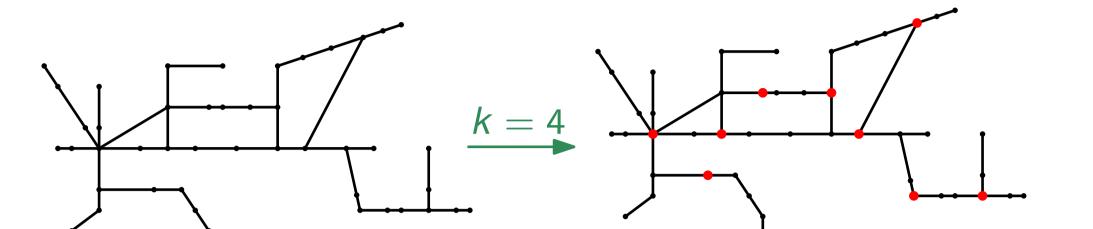
On k-Path Covers and their Applications



Stefan Funke and André Nusser and Sabine Storandt Universities Stuttgart/Freiburg, Germany

PROBLEM DEFINITION

Minimum k-(All-)Path Cover (k-APC) Given a (di)graph G(V, E) and $k \in \mathbb{N}$, select a minimum subset of vertices $C \subseteq V$ such that for every simple path $\pi = v_1, \cdots, v_k$ in G we have $C \cap \pi \neq \emptyset$.

THEORETICAL RESULTS

- k-APC and k-SPC are APX-hard (subsuming NP-hardness) \Rightarrow if the Unique Game Conjecture holds, k-APC and k-SPC cannot be approximated better than $2-\epsilon$
- k-approximation possible via pricing method (based on ILP formulation)
- log(*OPT*)-approximation for k-SPC via VC-dimension analysis \Rightarrow New result: VC-dimension d of a system of unique directed shortest paths is 3 (before only d = 2 for undirected paths was known)

SPECIAL CASE

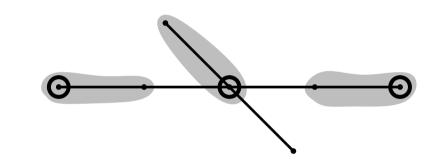

Minimum k-Shortest-Path Cover (k-SPC) Given a weighted (di)graph G(V, E, c) with $c : E \rightarrow \mathbb{R}^+$, and $k \in \mathbb{N}$, select a minimum subset of vertices $C \subseteq V$ such that for every shortest (according to C) path $\pi = v_1, \cdots, v_k$ in G we have $C \cap \pi \neq \emptyset$.

APPLICATIONS

Handle large Spatial Network Databases (SNDBs) with billions of geographic entities.

FACILITY LOCATION PROBLEMS

Place gas stations, signs, etc. such that every simple k-path is covered. \rightarrow minimum k-APC



PRACTICAL CONSTRUCTION

Pruning Algorithm

- start with C = V
- consider nodes one by one in some predefined order
- decide for each node whether it has to stay in C to maintain that *C* is a feasible *k*-Path Cover
- \rightarrow produces a minimal cover in the set theoretic sense!
- \rightarrow specialized decision oracle for k-SPC

Instance-based Lower Bounds \rightarrow number of pairwise disjoint k-paths

EXPERIMENTAL RESULTS

)+L_-[] \mathcal{A}

DATA AGGREGATION & POI RETRIEVAL

Where are gas stations along my route? What is the percentage of forest coverage along my route?

> Naive: data structure containing all points. \rightarrow data structure only on k-APC more efficient (space and time!)

MAP SIMPLIFICATION

Transmit graphs and routes to a client for visualization. Subsample to reduce bandwidth, but aim for consistent subsampling.

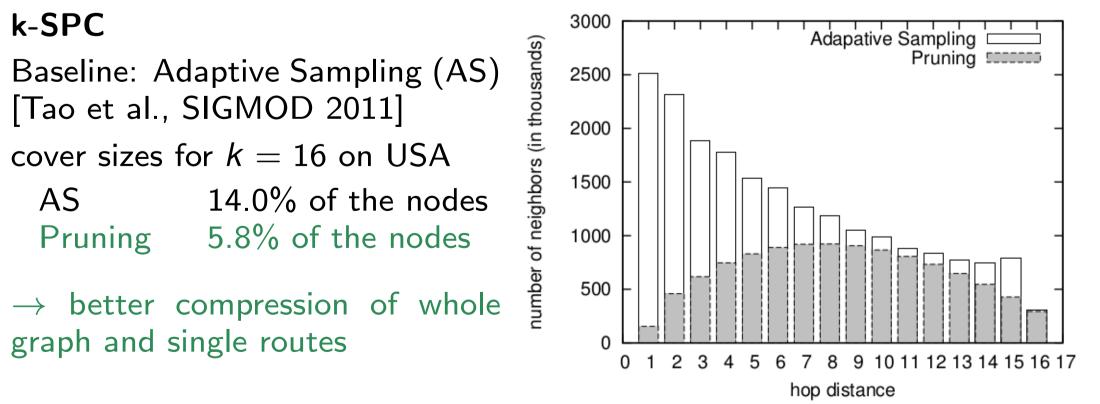
 \rightarrow transmit only overlay graph induced by k-APC

PERSONALIZED ROUTE PLANNING

Soft/Hardware C++, gcc 4.6.3 3.2GHz intel i5-3470, 16GB RAM

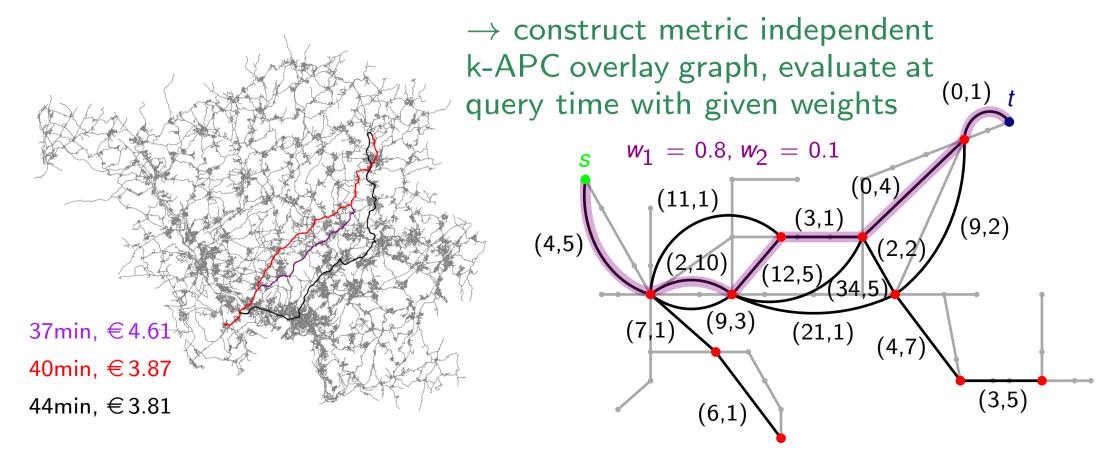
Test Graphs

Germany (GER): 18M nodes, 36M edges 24M nodes, 58M edges USA:


k-APC

G	k	lower bound	<i>C</i>	perc	time(s)	арх
	2	8,560,543	8,863,443	50.00%	17	1.04
	4	3,969,092	4,513,217	25.50%	21	1.14
ER	8	1,739,476	2,308,934	13.00%	29	1.33
U U	16	735,746	1,209,215	6.82%	47	1.64
	32	306,009	666,829	3.76%	119	2.18
	2	10,906,996	11,910,322	49.70%	15	1.09
	4	4,631,511	6,676,239	27.90%	22	1.44
USA	8	1,854,605	3,776,360	15.80%	38	2.04
) Ú	16	759,961	2,351,124	9.82%	110	3.09
	32	321,853	1,603,267	6.69%	15,100	4.98

+ results for varying node orders


 \rightarrow very efficient computation up to k = 16

 \rightarrow close-to-optimal results (provable via lower bounds)

Metrics like travel time, gas price, scenic attractiveness, jam likeliness, etc. can be regarded to determine the optimal route between A and B.

Every user might have an indivdual set of weights (one for each metric) defining the importance of this metric for him. \Rightarrow revealed at query time

MAIN APPLICATION: PERSONALIZED ROUTE PLANNING

k	Dijkstra	k-APC search	speed-up	Metrics
	(ms)	(ms)		travel time eucl. dist
8	3,282	481	6.82	height difference
12	3,282	356	9.21	energy
16	3,282	295	11.1	edge-type speed
20	3,282	265	12.4	rand
24	3,282	249	13.1	unit
28	3,282	248	13.2	

 \rightarrow experiments with up to 64 metrics

 \rightarrow to-date fastest personalized route planning scheme