The Hierarchy in Grid Graphs

Sabine Storandt

How to efficiently find shortest paths in grid graphs using Contraction Hierarchies (CH)

Contraction Hierarchies (CH) [Geisberger et al. 2008]: Dijkstra-based speed-up technique to accelerate shortest path queries in road networks $G(V, E, c)$

Basic Construction:
1. enumerate all nodes due to some notion of importance $L : V \rightarrow N$
2. contract nodes one-by-one wrt L, maintain shortest paths between remaining nodes by inserting additional edges (=shortcuts)
3. build new graph $G'(V, E', c')$ with $E' = E \cup$ shortcuts

In G' an edge $e = (v, w)$ is called upward if $L(v) < L(w)$, downward otherwise. A path is called upward/downward, if it consists of upward/downward edges only.

Maintaining Canonical Paths

Goal: find shortest path with minimal number of turns
- saves energy
- more natural way of moving

Approach:
1. assign edge classifiers to the shortcuts, indicating the type (v-vertical or h-horizontal) of the first and the last edge of the spanned path as well as the number of turns (t)
2. maintain in the CH-construction all shortcuts which are part of canonical paths
3. adapt the CH-search algorithm to the classifiers such that canonical paths can be found in the CH-graph

Theorem: For every pair of vertices s, $t \in V$ let $G^u(s)$ be the set of all upward paths starting in s and $G^d(t)$ all downward paths ending in t, then a bidirectional Dijkstra in $G^u(s) \cup G^d(t)$ provides the optimal path distance.

CH-GRAPH

For given source/target s, $t \in V$ let $G^u(s)$ be the set of all upward paths starting in s and $G^d(t)$ all downward paths ending in t, then a bidirectional Dijkstra in $G^u(s) \cup G^d(t)$ provides the optimal path distance.

Experimental Results

For mazes and rooms CH-search expands less nodes than the optimal path size, i.e. any search algorithm which is not based on path compression can not perform better than our approach!

<table>
<thead>
<tr>
<th>input type</th>
<th>avg. path size</th>
<th># of expanded nodes</th>
<th>A*</th>
<th>CH-search</th>
<th>CH-A* uni</th>
<th>speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>mazes</td>
<td>1,240</td>
<td>104,949</td>
<td>630</td>
<td>499</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>rooms</td>
<td>282</td>
<td>35,739</td>
<td>625</td>
<td>275</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>game maps</td>
<td>196</td>
<td>18,477</td>
<td>4,614</td>
<td>937</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>234</td>
<td>16,121</td>
<td>5,158</td>
<td>531</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>