
Frequency Data Compression
for Public Transportation Network Algorithms

Hannah Bast and Sabine Storandt
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
79110 Freiburg, Germany

bast,storandt@informatik.uni-freiburg.de

Abstract

Timetable information in public transportation networks ex-
hibit a large degree of redundancy; e.g. consider a bus go-
ing from station A to station B at 6:00, 6:15, 6:30, 6:45,
7:00, 7:15, 7:30, . . . , 20:00, the very same data can be pro-
vided by a frequency-based representation as ’6:00-20:00,
every 15 minutes’ in considerably less space. Nevertheless
a common graph model for routing in public transportation
networks is the time-expanded representation where for each
arrival/departure event a single node is created. We will in-
troduce a frequency-based graph model which allows for a
significantly more compact representation of the network, re-
sulting also in a speed-up for station-to-station queries. More-
over we will describe a new variant of Dijkstra’s algorithm,
where also the labels are frequency-based. This approach al-
lows for accelerating profile queries in public transportation
networks.

Introduction
Buses, trains, subways etc. often depart at fixed intervals
from the respective stations. Hence the compressibility of
timetable information is high as we can represent a list of
such departure events, e.g. 7:00, 7:05, 7:10, . . . , 12:00,
also as triple (7:00, 12:00, 5min) containing the start and
end time of the service and the frequency. In the following
we will describe ways to improve the computation of fastest
routes in public transportation networks based on this com-
pressed representation.

Modelling a Frequency-Based Graph
A standard way to model timetable information into a graph
is the time-expanded representation (as used e.g. in (Bast
et al. 2010)). Here for every arrival/departure event at a
station a node needs to be created, which results in a huge
amount of data. In the time-dependent model the number
of nodes/edges is significantly smaller, but the complexity
of the departure events is now shifted into edge cost func-
tions, which are costly to store and evaluate. Therefore both
models are comparable in terms of space consumption and
query times. We will now introduce an alternative graph
model based on frequency-compression. Here we only cre-
ate a node for each route per station (e.g. Bus 80 at main

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

S205

S314

S99

XA D

XA D
XA D

R12 R12 R12

R87 R87

R6

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

TB

TB

TB

TB

TB

TB

6min

8min

([8:00,23:00],15min, 12min)

([5:00,8:15],25min,16min)

([6:00,22:00],5min, 3min) ([6:00,22:00],5min,14min)

Figure 1: Cut-out of a frequency-based graph. ’A’ and ’D’
are walking (arrival/departure) nodes, ’X’ are transfer nodes
allowing to change between routes.

station) and connect them via frequency edges (FEs). Ev-
ery FE (S, S′) contains a quadruple ([a, b], f, c) with [a, b]
being the feasible interval in which all f seconds a certain
vehicle departs, taking time c to get from station S to S′.
The evaluation of such an edge for a certain time t@S can
be performed like this:

cost(t) =

a− t+ c if t < a

a+ d(t−a)/fe · f − t+ c if t ∈ [a, b]

∞ if t > b

Our model also allows for including walking between sta-
tions and transfer buffers (TB), see Figure 1.

Timetable information is typically specified in a GTFS
feed1. Here the possibility to provide frequencies is given,
but not always used. So constructing our graph we are of-
ten faced with the following problem: Given a set of de-
parture events T = {t1, · · · , tk} at a route node, compute
the minimum set of frequency-edges to represent them all.
This problem is known as cover by arithmetic progressions
and was proven to be NP-complete (Heath 1990). Therefore

1https://developers.google.com/transit/gtfs/reference

Manhattan Toronto
#stations 1831 10891
#departure events 278920 1599746
#freqeuncy-edges 87505 315300
compression factor 3.2 5.1

Table 1: Heuristic frequency-graph construction.

we propose a heuristic strategy: At first, we sort T increas-
ingly. Then we consider the first element t1 and compute the
longest possible arithmetic progression (AP) starting with
t1. We add this AP to our solution and mark all other el-
ements in T covered by it. Now we repeat the approach
with the next unmarked element. We do not exclude already
marked ones from the set, but we give preference to the AP
which covers the most unmarked elements. Example:

3 5 7 10 15 17 19 20 23 24 31 40 50 6030
1 2 3 4 5

The resulting reduction of FEs can be found for two real-
world examples in Table 1. Because a FE can be evaluated
in constant time, the compression factor translates into the
speed-up for station-to-station queries.

Profile Queries on Frequency Data
Profile queries play an important role e.g. in the construc-
tion of transfer patterns (Bast et al. 2010), a state-of-the-art
speed-up technique for routing in transit networks. In a pro-
file query, we are given a set of departure times T (e.g. all
departures over the day) at a station S and want to know
for each t ∈ T the optimal connections to all other sta-
tions. Naively we could run a complete Dijkstra for every
t ∈ T from the ’A’-node of S, resulting in a runtime of
O(|T |n log(n)+ |T |m). In practice this can be improved by
considering the values in T from latest to earliest and storing
along with every node the earliest arrival time assigned so
far. If with an earlier departure time the earliest arrival time
at some node v can not be improved, then v must not be fur-
ther explored. But even in this scenario, if the basic data ex-
hibits frequency-based departure times, we repeat the same
set of operations again and again (only with a time shift).
Hence we would like a single Dijkstra handling all these de-
parture times at once. For this purpose we assign quadruples
([a, b], f, c) to the nodes instead of single values, with [a, b]
marking the interval of arrival times with frequency f , and
c being the summed costs since the departure from S. The
crucial task is adapting the edge relaxation to this new set-
ting. So given a label l = ([la, lb], lf , lc) at node u ∈ V and
an edge e = (u, v) ∈ E with ([ea, eb], ef , ec), the goal is
to compute the respective label(s) at node v. We proceed in
five steps (see Figure 2 for an example):

1. Compute lcm = lcm(lf , ef) to get the lowest common
frequency.

2. Compute the first relevant start time start at u. If la ≥
ea, it yields start = la (if la > eb the edge must no be
considered at all). Otherwise if la < ea then start =
la + b(ea − la)/lfc · lf . If this would result in the start
value exceeding lb we reset it to lb.

3. Compute for the first steps = lcm/lf relevant departure
times {start, start + lf , · · · , start + (steps − 1) · lf}
(restricted to values ≤ lb) the explicit edge costs cost and
arrival times arr at v. Store the respective values in a
vector A.

4. Parse through A and remove arrival times, which occur
more than once (of course keeping the one with the low-
est cost); but be careful, that the last connection is not
among the pruned ones (if so, add this single connection
manually).

5. For every remaining item in A, create a new label l′ at
node v, with l′a = arr, l′b = l′a + b(min(lb, eb) − l′a +
cost)/lcmc · lcm, l′f = lcm and l′c = lc + cost.

[6:45,10:45], f=15min, c=2h30min

[8:05,20:05], f=20min, c=8min

[8:13,10:13], f=60min, c=2h43min
[8:33,10:33], f=60min, c=2h48min
[8:53,10:53], f=60min, c=2h38min

lcm(15, 20) = 60
start = 8 : 00
steps = 60/15 = 4

dep arr cost
8:00 → 8:13, c=13min
8:15 → 8:33, c=18min
8:30 → 8:53, c=23min
8:45 → 8:53, c= 8min

Figure 2: Example of a frequency-edge relaxation.

So the runtime of an edge relaxation is in O(max(lf , ef)),
and at most lcm/lf new labels are created at v (but obvi-
ously never more than the number of departure events at
the source station). For walking edges and edges adjacent
to transfer nodes (which can always be used immediately),
it is not necessary to perform lcm = lcm(lf , ef) = lf
expanding steps. Instead the relaxation leads to exactly
one new label at v which can be determined directly as
l′ = ([la + ec, lb + ec], lf , lc + ec).
Of course not all labels created at the target node must repre-
sent (temporary) optimal connections. Therefore the result-
ing labels have to be pruned properly and joined if possible
to reduce the space consumption.

The respective runtimes of our approach for an implemen-
tation in C++ on an Intel i5-3360M CPU with 2.80GHz and
16GB RAM can be found in Table 2.

Madrid Artificial
#stations / #departures 4653 / 1.20M 750 / 0.23M
naive 26.83 28.05
frequency-based 5.98 0.49
speed-up 4.48 56.39

Table 2: Averaged runtime for 100 profile queries from ran-
dom source stations in seconds.

References
Bast, H.; Carlsson, E.; Eigenwillig, A.; Geisberger, R.; Har-
relson, C.; Raychev, V.; and Viger, F. 2010. Fast routing
in very large public transportation networks using transfer
patterns. In Algorithms–ESA 2010. Springer. 290–301.
Heath, L. S. 1990. Covering a set with arithmetic progres-
sions is NP-complete. Inf. Process. Lett. 34(6):293–298.

