Enabling E-Mobility: One Way, Return, and with Loading Stations

Sabine Storandt and Jochen Eisner and Stefan Funke

TAKING INTO ACCOUNT LOADING STATIONS

A loading station (LS) is a node \(e \in V \), that loads up a full battery \(\mathcal{B}_0 \), whenever it is visited. The set of all LSs is called \(L \subseteq V \).

GOAL Compute paths from \(s \in V \) to \(t \in V \) with minimal number of necessary recharging events.

APPROACH Build auxiliary graph \(Q \) upon loading stations in a preprocessing step.

\[
Q = (E', \{L \\}=:m)
\]

\(L \) is a set of LSs

\(\forall (e, f) \in E' \forall (g, h) \in L \Rightarrow (e, f) \text{ is reachable from } (g, h) \)

A path in \(Q \) is constructible from \(e \in V \), it cannot be extended further.

QUERY ANSWERING

1. Compute \(\mathcal{E}_{L} \): L set of reachable LSs from \(s \in V \)

\(\text{Time}(\mathcal{E}_{L}(s) = m) \)

2. Compute \(\mathcal{E}_{L} \): L set of LSs from \((g, h) \) can be reached from \(s \in V \)

\(\text{Time}(\mathcal{E}_{L}(s) = m) \)

3. Run BFS from \((g, h) \in Q \) until the first node in \(L \) is reached

\(\text{Time}(\mathcal{E}_{L}(s) = m) \)

4. Backtrack respective path

\(\text{Time}(\mathcal{E}_{L}(s) = m) \)

Total run time \(\text{Time}(\mathcal{E}_{L}(s) = m) \)

MULTI-CRITERIA OBJECTIVES

Natural Goals

1. Find the energy-optimal path amongst all paths at most 10% longer/better than the shortest/quickest path

2. Find the shortest/quickest energy-feasible path

3. Find the shortest/quickest feasible path with at most 1 recharging events

4. Find a feasible path with a minimum number of recharging events and bounded distance/time.

Instance-based lower bounds and heuristic results for the number of LSs necessary to achieve the goals ERC and ECC in the graph of Germany.

Approach for 1. & 2.
Label setting (realization) (LSR) still works if cost or resource constraints are functional.

Adapt speed-up technique Contraction Hierarchies (CH) to decrease query times for LSC.

Shorterm feasible paths between loading stations are necessary under the choice of \(f \) and \(l \) (pre)precomputation possible, build layered graph

Augment layered graph on query time with proper edges from \(f \) to \(t \) (restituted by two local LSCs)

where \(\mathcal{E}_{L} \) can run locally the optimal path

OVERALL GOAL

develop algorithmic tools to solve fundamental problems in E-Mobility in order to make EVs competitive to conventional cars