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Abstract. We present a new method for navigating in a street network
using solely data acquired by a (smartphone integrated electronic) com-
pass for self-localization. To make compass-based navigation in street
networks practical, it is crucial to deal with all kinds of imprecision and
different driving behaviors. We therefore develop a trajectory representa-
tion based on so-called inflection points which turns out to be very robust
against measurement variability. To enable real-time localization with
compass data, we construct a custom-tailored data structure inspired by
algorithms for efficient pattern search in large texts. Our experiments
reveal that on average already very short sequences of inflection points
are unique in a large street network, proving that this representation
allows for accurate localization.

1 Introduction

Mobile devices are one of the primary tools for navigation nowadays. They more
and more replace integrated navigation systems in cars, and can also be used
when going by bicycle or foot. Typically, mobile devices rely on GPS, GSM or
Wifi for localization. GPS allows for a rather precise determination of the actual
position (up to few meters) if the GPS receiver gets signals from at least four
satellites. Unfortunately, this might not always be possible due to signal blockage
(e.g. by high buildings or foliage), furthermore signal reflections might induce
imprecisions. To use GSM, one has to be connected to a cell phone network,
with the signal strength of nearby base stations revealing the position (with a
precision of ≈50m). Wifi localization works in a similar fashion. Here, companies
like Google georeference wireless access point IDs, and as soon as signals are
received, a certain geographic location can be estimated (with a precision of
≈20m). So for GSM and Wifi, interaction with a third party is required to self-
localize. And even for GPS, to obtain a faster position lock, third party servers
are contacted via GSM or 3G. This raises privacy issues, as the own position
is revealed to these third parties. There are recent attempts, though, to crowd-
source GSM and Wifi access points and make the data openly available3. But
the coverage of mapped data is still poor. Moreover, GSM and Wifi is simply not

3 https://location.services.mozilla.com/



available everywhere; especially in rural or sparsely inhabited areas one cannot
expect precise localization based solely on those signals.

We propose a new way of navigating in street networks, by making use of the
electronic compass present in most of the current smartphones and other mobile
devices. We acquire sequences of absolute directions and use them to identify
the trajectory the vehicle has taken in the network. So for a given road map and
the measured absolute directions, we aim at identifying the path in the map that
most likely is the one that led to those measurements. The problem of pinpointing
measurements to a path in a map is commonly referred to as map matching. The
advantage of our scheme is the ability to self-localize in a completely autonomous
way. No interaction with third parties is required. Moreover we do not rely on
any kind of distance measurements, which are typically imprecise if conducted
with a mobile device.

We will describe in detail how to obtain, process and store compass data,
and how to instrument this for precise and fast self-localization.

1.1 Related Work

In the classical map matching problem, we are given a sequence of possibly im-
precise location measurements (obtained e.g. with GPS, GSM or WLAN). This
setting is well-studied in different variations. The on-line version (measurements
have to be processed the moment they are taken) is described e.g. in [1]. In the
off-line case the best possible path in the map for a given measurement sequence
is chosen as the optimal one according to some scoring function. The score might
for example be the Frechet-Distance, see [2], or the objective function value of
an integer program [3]. In [4], the authors have shown that even very imprecise
GSM localization allows for a very accurate reconstruction of the route a mobile
user has traveled along in a network if measurements for a long enough period
can be gathered.

Alternative sources of information for localization (besides GPS, GSM or
WLAN) have been investigated before. In [5] the authors introduce so called
path shapes which describe the sequence of relative movements of a vehicle (e.g.
’500m straight, 40 degree left turn, 200m straight, 90 degree right turn, · · · ’).
Experiments show, that different paths quickly exhibit differing path shapes,
which allows for high-precision self-localization. The relative movement data is
acquired by reading information from the on-board computer of a car.

Smartphones do not have access to this data, as typically there is no open
interface for communication with the on-board computer. Of course, most smart-
phones also have integrated gyro sensors and accelerometers, which allow to mea-
sure turning angles and (increase in) velocity. In theory, this yields the same kind
of data as needed for the path shape localization scheme. In practice, though, due
to the imprecision of this data, such methods only make sense to complement,
not replace GPS localization. The latter is the goal of this work.

In [6] the concept of elastic pathing is introduced. The authors show that fine-
grained speed information is also sufficient for self-localization. Every path in the



street network exhibits a typical ’speed profile’ to which actual measurements
can be compared. In contrast to path shapes, this localization scheme requires
knowledge about the starting location. We aim to be able to compute the actual
position without the start position being known beforehand. Moreover we have
the same problem here as with path shapes: While the car itself monitors the
driving speed autonomously, speeds measured by a smartphone normally involve
GPS usage. And even more severe, a huge amount of historical data is necessary
to have good typical speed profiles at hand. This data is not easily available with
sufficient coverage (especially for bicycles).

In [7], positions of pedestrians are determined using gyro sensors and a heuris-
tic which mitigates direction errors by incorporating the underlying street net-
work data. They do not use smartphones, though, but specially constructed
devices attached to a shoe. Again, they require the user to provide the starting
location. No large-scale study is conducted and no timings are given; hence, it
is unclear whether this methods can be used for real-time localization.

In other navigation domains where vehicles do not have to follow streets
but move around almost freely e.g. considering ships, planes, missiles or robots,
navigation based on the movement alone is known as inertial navigation system
(INS). Here, given the start point, the current position is calculated based on
speed and direction of the moving object as well as the elapsed time since depar-
ture. Unfortunately, when using INS already small measurement errors translate
into large positional errors accumulating over time, as the new position is always
computed relative to the last one. Hence in regular intervals the actual position
has to be corrected using e.g. GPS; therefore the autonomy of the system is com-
promised. An incarnation of INS for pedestrians was described in [8]. They use
the built-in electronic compass of modern smartphones and employ an approach
based on Bayesian networks, which combines GPS and compass information in
a neat manner. As indicated before, they do not consider an underlying path or
street network, but investigate free spaces and buildings where people can wan-
der around. In contrast to this, a car or bicycle has to follow streets or paths.
Therefore the effect of measurement errors is mitigated in our scenario. Even bet-
ter, we gain information while driving around, hence the positioning becomes
more and more accurate over time – quite the opposite of the INS paradigm.

1.2 Contribution

This paper presents a novel localization scheme purely based on absolute di-
rections acquired by an electronic compass. We describe how to retrieve such
data using a conventional smartphone, and how to deal with numerous sources
of imprecision. We propose a new compass-based representation for trajecto-
ries, which is far more robust in particular against variations of driving speed
than temporal subsampling of the absolute directions (e.g. by measuring ev-
ery second). We show experimentally that already short paths in a network are
characterizable by our compass representation, i.e. their representation is unique
among all possible paths. As our framework does not rely on a known starting



position, naively, we have to consider every node in the network as a potential
starting point and then compute the one that most likely led to the observed
measurements. An implementation of this naive approach scales very badly with
the network size. To enable real-time self-localization, we therefore develop a
custom-tailored data structure inspired by algorithms for efficient pattern search
in large texts. This data structure allows for self-localization within fractions of
a second even in large road networks. Finally, we provide an experimental study,
including results on real-world data (collected by bicycle).

2 Wireless Acquisition of Compass Data

The first step in the pipeline is to acquire precise absolute direction information
while driving around. In the following, we provide the details for collecting such
data with the help of an electronic compass.

2.1 Electronic Compass

We implemented an Android app to gather electronic compass data. Five differ-
ent methods based on different kinds of virtual and physical sensors provided by
the android API4 were employed:

Orientation Sensor. This used to be the standard way of acquiring compass data,
but is officially deprecated now. The orientation sensor is a virtual sensor which
directly returns the actual orientation. No parameters are required.

Magnetometer and Accelerometer to Rotation. This is one current standard way
of getting absolute direction information. It returns the rotation matrix resulting
from reading out the sensor values. No parameters are required.

Low Pass. This method is also based on the magnetometer and the accelerometer
but additionally includes a low-pass filter to take care of short-term fluctuations.
The higher the input parameter α, the less short-term fluctuations influence the
resulting orientation.
Rotation Sensor. This sensor is similar to the orientation sensor but returns a
rotation matrix and an estimation for the precision of the measured values.

Attitude Heading Reference System (AHRS)5. Apart from the accelerometer and
the magnetometer, this method also uses the gyro sensor to estimate the orien-
tation. There are several tuning parameters.

We stored direction values once per second for our real-world experiments. The
data collected during an hour of measuring directions is below 300kB, so there
is no problem with storing the measurements locally on the phone.

4 http://developer.android.com/guide/topics/sensors/sensors_overview.html
5 http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/



2.2 Smoothing

Naturally, no sensor is flawless and the measured angles are perturbed by all
kind of external factors. To take care of these fluctuations, we apply a smooth-
ing technique. For that purpose we convert the measurements into a polyline.
We do this by starting at (0, 0) in a two-dimensional coordinate system, and then
elongate the line by a straight segment in the direction of the measured angle.
We always use the same length for each straight segment, i.e. we assume constant
travel speed. Then we apply the Douglas-Peucker algorithm [9] to this polyline.
Douglas-Peucker reduces the number of points on a polyline but faithfully pre-
serves the overall shape at the same time, therefore we regard this algorithm as
very useful in our scenario.

3 Compass Paths

Once the compass data is acquired, the challenge is to match these measurements
to a path in the underlying street network. This means paths in the network and
gathered measurements have to be made comparable by a common representa-
tion. A natural way of encoding a trajectory is just the sequence of absolute
directions measured e.g. every second while driving. It turns out that this ap-
proach is too error-prone to be practical, though. In the following, we first discuss
in detail why this is not the envisioned representation. Then we introduce a new
representation, based on so called inflection points which is much more suitable
for matching a compass-based trajectory to a path in the network.

3.1 Representation as Sequence of Absolute Directions

The problem of using the sequence of measurements received from the electronic
compass directly for map matching, is that the descriptions of turns in the
network and in a real trajectory might differ considerably. In a given network
representation, a turn happens typically at a single point. So a turn is a sequence
of two absolute directions, the one in which the vehicle headed before, and the
one in which the vehicle headed after. For example, 30◦,60◦ describes a 30◦

turn. But measuring the direction every second or even more fine-grained, we
have to expect that the description of the trajectory for the very same turn
looks more like this: 30◦,37◦,51◦,60◦. In fact, every angle between the entrance
and the exit angle might appear in real measurements. And depending on the
sampling rate, even driving the same turn in the exact same way might lead to
a new representation each time. From the pure sequence of absolute direction
measurements, it is very difficult to tell which angles are artefacts of turns.
Therefore we consider this kind of representation unsuitable for map matching.

3.2 Inflection Point Representation

We aim for a compass-based path representation which is robust against different
driving styles and the problem of modelling (sharp) turns as described above. So



let φ : [0, 1]→ be the function mapping points along the path (parametrized over
[0, 1]) to an absolute direction. Driving the same path twice at different speeds,
we get two different functions φ1, φ2 with different parametrizations of the path
(here φ2 could also be interpreted as the path in the underlying network). The
question is in what respect could they be considered equal?

A typical path includes both curves or turns to the left as well as to the
right. So a possible characterization is to consider the sequence of angles where
there is a change from increasing angles to decreasing angles or vice versa. This
means in particular, that the sequence of angles resulting from a right/left turn
is completely ignored. In fact, this is nice, as there is no way to predict how the
subsampling of a turn will look like – and the chances it is the same as in the
underlying network is miniscule. On the contrary, points that indicate a change of
turn direction tend to be in the middle of almost straight segments or at least at
sections where the directional change is not as pronounced as in sharp curves, see
Figure 1 for an illustration. Hence restricting the measurements to such points
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Fig. 1. Continuous trajectory with induced inflection points (blue). Two discrete mea-
surement sequences conducted on this trajectory are indicated by the red circles and
the green crosses, respectively. The labelled points near inflection points show that
absolute directions are rather stable, while in curves even small sampling differences
lead to drastic direction variations.

seems to be a more robust and clean way to compare φ1, φ2. In differential
calculus these points of turn direction change are called inflection points. They
are characterized by the second derivative changing sign. If we map directions
to points in time, the inflection points turn out to be local maxima/minima.
In our case, the function φ need not be differentiable, but we will still call the
resulting representation the inflection point representation (IPR) or compass
path. Obviously, the IPR of a path in the street network and of (smoothed)
real-world measurements can be computed in linear time, by sweeping over the
induced angles and extracting local extrema.



4 Map Matching

Having a common representation for paths in the network and compass paths,
the next step is to find for a given compass path the network path that fits
best, i.e. solving the map matching problem for our specific input. The notion
of similarity for compass paths is yet to be defined. Ideally, we would like to
declare two compass paths equal if and only if the sequence of inflection points
is exactly the same. But obviously this will yield no match in the map most of
the time. An electronic compass is hardly free from error; and even if it were,
people do not drive exactly in the middle of the lane, heading in exactly the
direction of the respective road segment. So we have to introduce some degree
of fuzziness here.

4.1 Curve Matching

In computational geometry, the same problem arises when (polygonal) curves
have to be matched. Transferred to our scenario, we are given a collection of
polygonal curves (represented by the underlying graph) and want to select the
one, that matches our reference curve (the given trajectory) best. One classical
measure here is the Frechet-Distance which was already applied to planar maps in
[2]. The Direction-Based Frechet-Distance [10] also allows for partial matchings
which is beneficial in our envisioned scenario, as our trajectory naturally is only
a small part of the whole graph. But these methods require integral calculus
and have a runtime of Ω(ab) with a and b being the number of vertices on the
two curves. With b denoting the number of all vertices in the network in our
application, this is far from being practicable in a reasonable amount of time.
Moreover curve similarity measures like the Frechet-Distance do not necessarily
capture the similarity one aims for when considering trajectories. Especially if
typical angle fluctuations are known for compass paths (due to experimental
studies), there is no easy way to incorporate such knowledge in the measure.

4.2 Tolerance Ranges and Shape-Preserving Search

As argued before, the sequence of inflection points is never going to be exactly
the sequence of inflection points on the respective path in the underlying map.
So we have to allow inflection points to differ by at least some degrees. We
realize that by introducing a tolerance value t. Hence, two compass paths P =
p1, p2, · · · , pa P ′ = p′1, p

′
2, · · · , p′a are equal if |pi − p′i| ≤ t for i = 1, · · · , a.

The parameter t captures the imprecision of the electronic compass as well as
differing absolute directions induced by individual driving behaviour.

Now the question is how to a extract matching compass paths from the
network. Lets assume for the moment that the start location s ∈ V is known.
In [5], a shape-preserving Dijkstra algorithm (SPD) was introduced. Here, a
Dijkstra run is started in s, but paths are only explored if their encoding is
declared equal (according to our introduced comparison oracle) to the encoding
of the reference path (aka the trajectory we want to match). So a node v is



only looked at, if the respective path from s to v in the actual Dijkstra search
tree yields a prefix of the reference encoding (including tolerance ranges). For
an SPD to be as efficient as possible, a newly explored edge should be encodable
in constant time. Therefore, in our scenario, we do not only store predecessor
labels with every node, but also sign labels, that tell whether we are actually in
a right bend, a left bend or in no bend at all. This information along with the
difference of the absolute directions of the last two edges on the path is sufficient
to decide whether a new inflection point arises.

With the help of this modified SPD, we can search for the longest match
of the trajectory in the map that starts at s. As the number of paths that are
compatible with the reference trajectory should be very small for reasonable
values of t, a single SPD computation is typically very quick. But it is the
starting point s itself that is unknown and that we want to discover. Hence,
theoretically, we have to start an SPD in every single vertex of the network, as
each of them might be the start location we are looking for. Obviously this scales
very badly with the network size. Our experiments will reveal that in networks
with millions of nodes and edges query times are in the order of minutes. This
is absolutely impractical for navigation purposes. Therefore, in the next section
we will describe a data structure which allows to speed up queries significantly.

5 A Data Structure for Fast Inflection Point Recognition

Checking for every node in the network if it is a valid starting point of the tra-
jectory in question is far too time-consuming. Of course, once we have identified
the correct start location, we can invoke SPD computations for updating the
location of the vehicle if it moves on. But to get the initial correct match, we
need an alternative approach.

To accomplish fast localization queries, we follow the idea presented in [5]
to transfer the map matching problem to a pattern search problem in texts. So
the encoding of the trajectory is regarded as a concatenated string. The text
describing the network consists naively of all encodings of possible (shortest)
paths in the map. Several preprocessing methods for large text corpora exist,
which allow to find a pattern in time linear in the pattern length (so completely
independent of the length of the text). One way to achieve this, is the creation of
a generalized suffix tree (GST) on the text [11]. A GST requires only linear space
in the length of the text, if the alphabet has bounded size. This is of course the
case in our application, as our ’letters’ correspond to absolute directions with a
precision of one degree. Therefore our alphabet has 360 letters only.

In the following, we first describe the way a conventional GST is constructed
and how queries are answered using this data structure. Then, we briefly review
how the GST construction on path shapes works (as proposed in [5]). This GST
construction scheme is based on some basic assumptions about the encoding, that
are not fulfilled with our inflection point representation of trajectories. Therefore
we subsequently describe how to adapt the GST creation to be applicable to
compass paths as well.



5.1 Conventional Generalized Suffix Trees

For a set of strings S1, · · ·Sk a GST represents all suffixes of those strings,
fulfilling the following characteristics: (1) Each tree edge is labelled with a non-
empty string. (2) There is no inner node with degree 1. (3) Any suffix of a
string corresponds to a unique path in the tree (starting from the root) with the
concatenated edge labels along that path starting with this suffix.

A suffix is grafted into the GST by first identifying its longest prefix that
already exists in the tree by tree traversal. If the path of this prefix ends in a
node, a new edge and a new leaf are created, representing the last part of the
suffix (if there are remaining characters). Also, the path could end implicitly,
that means the edge label contains additional characters that are not in the
suffix. Hence this edge has to be split together with its label, creating a new
inner node that represents the longest prefix. Then one can proceed as described
before. By performing this for every suffix occurring in S1, · · · , Sk a GST of
this set of strings is obtained. Note, that there are even more efficient ways of
constructing GSTs, see e.g. [11]. But for the specific construction of the GST for
the map matching application these are not applicable, as we will discuss later.

After the GST is constructed, the question whether a given pattern is con-
tained in S1, . . . , Sk can be answered in time linear in the size of this pattern, if
the alphabet size is bounded, since a bounded alphabet size allows to associate
an array with every node, which for each letter of the alphabet stores the edge
(if any) whose label starts with this letter. So a query starts in the root of the
GST, looking for an outgoing edge with a label, that begins with the first letter
of the pattern. If such an edge exists, we have to compare the edge label to the
respective pattern prefix element by element. If they are equal, we can go to the
end point of the edge and repeat the search with the remaining elements of the
pattern. If we always find a match, the pattern is contained in the underlying
set of strings, otherwise it is not.

5.2 GSTs for Path Shapes

To construct the GST conventionally, all strings, i.e. all path shapes of all (short-
est) paths in the network have to be explicitly available. But for larger networks
this is clearly impractical. In fact, there are O(n2) shortest paths in a network on
n vertices. Even if their encoding length is rather small, the space consumption
is far too high to store them all explicitly. Furthermore it is waste of time and
space, to store all possible (long) paths. In fact, it suffices to store the prefixes of
all paths until they are unique in the network. Because at this point, if a trajec-
tory matches this prefix, the starting point can already be identified correctly,
and the current location of the vehicle can be deduced. To determine efficiently
whether a path encoding is unique in the network is non-trivial. Therefore the
GST scheme as presented in [5] interleaves this classification with the GST cre-
ation. So the strings that are contained in the final GST are not available a
priori, but are constructed in an online manner.



Fig. 2. Left: Conventional GST, here on the single string ’ananas’. Right: Small cutout
of a GST on path shapes. The letters on the edges are now angles. Every leaf is labeled
with the source vertex of the encoded path.

The detailed construction works as follows. A Dijkstra run is started in every
vertex of the network, but with a given maximal distance. After each Dijkstra
explored all nodes up to that distance (or the respective priority queue ran
empty) it is frozen and all contained paths (implicitly given by the predecessor
labels) are extracted and encoded. These encodings are grafted into the GST,
with each node in the GST knowing the source and target vertex of the network,
whose shortest path led to the creation of the node. Moreover every node has
a boolean tag, that is initially set to true. If a path with different target vertex
results the very same node in the GST, the tag is turned to false (this can
be decided as a by-product of the grafting). Having done this for all vertices,
the nodes in the GST with a true tag represent unique paths in the network.
Hence the respective targets can be removed from the Dijkstra search tree of the
respective source, pruning the search space. As long as not all priority queues of
the Dijkstra have run empty, the process is repeated with an increased maximal
distance. At the end, all necessary path prefixes are encoded in the GST. In
Figure 2, examples of a conventional GST and our specialized GST-based data
structure are provided.

When dealing with tolerance ranges, the construction has to be adapted
slightly. In fact, it has to be checked whether a path prefix is unique with respect
to that tolerance. If not, the respective search spaces cannot be pruned.

5.3 GSTs for Compass Paths in IPR

There are basically two requirements for the path shape GST construction
scheme to work:

1. If an encoding of length l is unique among all other occurring encodings with
length ≤ l, a longer occurring encoding cannot destroy the uniqueness.

2. The length of a path encoding is equivalent to the path length.

The first condition is naturally fulfilled in our scenario, but using inflection
points the code length does not have to be proportional to the path length at



all. So the second condition is violated. Therefore we have to modify the suffix
tree construction. To ensure that every path with an encoding length of a given
value l is known, we proceed as follows: For every vertex we run Dijkstra with
an upper bound on the number of polls (i.e. extractions of elements from the
priority queue). After this number of polls is processed (or the priority queue
ran empty), we extract the set UL of unsettled leaves in the Dijkstra search tree.
For each node in UL we compute the respective path via predecessor-labels and
encode it using IPR. If all encodings have a length equal to or exceeding l we
are done. Otherwise we increase the poll limit and continue the Dijkstra run.
After we ensured that every leave in the search tree is either settled or leads to a
long enough encoding, we backtrack all paths from leaves nodes (i.e. all longest
paths) and encode them. If an encoding exceeds l, we just use its l-long prefix.
All resulting encodings can then be grafted into the suffix tree.

Note, that using inflection point encoding some of the Dijkstra runs might
explore a very large search space in order to achieve the required encoding length
for every path, e.g. in the case of long straight highways the code length will
remain zero. As this increases runtime and space consumption significantly, it
should be prohibited as possible. If the path p = s, u, v of a settled node v from
the related source s consists of two edges with the same absolute direction, then
every elongation of this path will have the same encoding as the suffix of the
path starting at node u. Hence there is no need to explore these paths starting in
s and therefore in such a case we remove v from the search tree. We can proceed
analogously, if we have a path p = s, u, v, w with w being a settled node and
the directions of the three edges (s, u), (u, v), (v, w) increase or decrease strictly
monotonous. Here again all path elongations will have the same encoding as the
path’s suffix starting at u and therefore the search space can be pruned.

5.4 Answering Queries

The complete pipeline for answering a map matching query on compass-based
data looks like this:

– gather absolute directions via an electronic compass, e.g. every second
– smooth the data to get rid of artefacts
– extract the inflection point representation
– search for the resulting encoding in the GST in order to determine the source

vertex in the street network
– if such a source vertex was found, run a SPD (with the trajectory as refer-

ence) from this node to determine the end point of the trajectory and hence
the current location of the vehicle

Note, that we could also construct the GST backwards, i.e. on reversed paths.
Then searching for the reversed inflection point representation of the trajectory,
the GST would provide us with the actual position of the vehicle right away –
without the necessity to run a SPD. But on the one hand, a single SPD is very
efficient, and on the other hand, it allows to display the whole trajectory driven
so far on the map. Hence we stick to the forwards approach anyway.



6 Experimental Results

To show the practicability of our approach, we implemented the described al-
gorithms and methods and tested them on several input networks. Our imple-
mentation is written in C++, timings were taken on a single core of an AMD
Opteron 6172 with 2.1GHz and 96 GB RAM. Table 1 shows on overview of
the sizes of our networks (ST -Stuttgart, MA - Massachusetts, BW - Baden-
Wuerttemberg, SG - Southern Germany, all extracted from OSM6), along with
several characteristics. We included Massachusetts as it contains many grid-like
substructures (especially in the area of Boston) which we consider challenging
for our approach. We observe that the ratio of inflection points to all points on
the average shortest path is rather high in larger graphs, in fact about 50%.

Table 1. Characteristics of the used test graphs. Averaged values are calculated on the
basis of 1000 randomly chosen shortest paths (SPs). The number of inflection points
(IPs) on a path equals its encoding length according to our model.

ST MA BW SG

# nodes 122,334 294,345 999,591 5,588,146
# edges 243,593 731,874 2,131,490 11,711,088
avg. path length 15.9km 120.4km 78.2km 173.7km
avg. # IPs on SP 119 209 664 1373
avg. % IPs on SP 30.0 51.2 45.5 48.6

6.1 Characterizability of Street Networks

The first crucial step is to show that the inflection point representation really
suffices for accurate localization. For that purpose, we conducted the following
experiment: We randomly choose a vertex pair s, t ∈ V and compute the shortest
path π between them. Then we use our SPD for every possible start vertex to find
the longest match of the inflection point encoding of π. Naturally, the longest
match will be π itself or even a superpath, as depicted in Figure 3. To find out,
if there is a path really different from π but sharing its encoding, we restricted
the result to matches with at least 80% of the edges being different from the
reference path. In Table 2 the average prefix lengths can be found, grouped by
the number of inflection points we demand the match to contain at least. If we
set this number to zero, the longest match simply is the longest shortest path
in the network with no encoding, completely independent of the reference path.
Increasing the number of inflection points that have to be equal, the prefix sizes
decrease dramatically. Already using 5 IPs, the IPR becomes unique quite early,
even when using an angle tolerance that allows the IPs to differ by 5 degrees
(t = 5). The first 10 IPs are rarely matched by any other path in the map even

6 openstreetmap.org



Fig. 3. Left image: Reference path (blue) and its longest match in the map. Without
restrictions, the match (red+blue) is naturally a superset of the reference path (blue),
as there are prefixes/suffixes with zero encoding length. The two images on the right
show long pure right or left turns which do not exhibit encodings in IPR.

Table 2. Unique prefix length (in meters) in dependency of the number of inflection
points (IPs) a match has to contain for exact queries (left table), and with an angle
tolerance of t = 5 (right table). The respective query times (in seconds) denote the
time that was necessary to finish a SPD computation for every vertex in the network.
Values are averaged over 1000 random queries.

ST MA BW SG

exact avg. prefix length (m)

0 IP 4,822 28,430 4,289 91,941
1 IP 2,509 21,388 3,060 45,083
2 IP 582 9,085 1,269 31,757
5 IP 13 114 66 1,596
10 IP 0 2 1 4

time 7.86 17.18 36.73 245.63

ST MA BW SG

t= 5 avg. prefix length (m)

0 IP 5,255 31,931 4,731 94,146
1 IP 4141 31,293 4,441 81,934
2 IP 3,047 23,445 3,778 62,309
5 IP 835 8,853 1,210 4,998
10 IP 5 175 14 3

time 8.03 19.01 42.81 287.12

for Southern Germany. There, 10 IPs correspond to less than one percent of the
total number of IPs on an average path.

Hence IPR encoding for shortest paths in street networks seems to be a
feasible way to solve the map matching problem accurately. But the running time
of the naive approach is a drawback, increasing significantly with the network
size – resulting from a SPD run started in every vertex. It is almost unaffected
by the required number of IPs, as the paths with zero encoding have to be
explored anyway, leading to a total runtime of over 4 minutes for a single query
in Southern Germany.

6.2 GST Construction

We computed GSTs for all our test graphs, for an exact as well as an imprecision-
tolerant comparison model. Table 3 contains the characteristics of the created
GSTs. The depth of the GST – reflected by the maximal code length we had to
consider – is quite small for all test graphs. For every path in Southern Germany
that contains at least 17 inflection points, we can be sure to find a proper source



node with the help of the GST. Moreover for exact queries this means that at
most 17 comparisons are necessary to retrieve this source node. Having a look at
the number of explored nodes per Dijkstra run, the search spaces are very small
on average. Nevertheless some of the Dijkstra search trees contain very long
path sections with zero encoding, leading to very long maximal distances in that
tree, e.g. over 37 km for Massachusetts and over 155 km for Southern Germany.
But even with the majority of the Dijkstra runs being very fast, the run time
of the preprocessing scales badly with the network size and the introduction of
an angles tolerance t. While the depth of the GST only doubles for t = 5, the
runtime increases significantly. This is due on the one hand to the larger search
spaces for the Dijkstra computations and on the other hand to the increased time
for checking whether a node in the temporary GST is unique. On a single core
we needed about one hour to preprocess BW with exact comparison and about
a day with t = 5. It took already two days to preprocess Southern Germany
without considering tolerances. Future work will include the parallelization of
the Dijkstra computations to speed up the preprocessing and permit to use
even larger graphs and higher tolerances. But the preprocessing step only has
to be performed once – for the queries the resulting GST suffices. For Southern
Germany the respective data structure is less than 4 GB in size and hence could
be stored on a SD-card of a mobile device.

Table 3. Experimental results of the online GST creation.

exact t=5

ST MA BW SG ST MA BW SG

max code size 12 15 13 17 30 37 31 33
avg. #expl. nodes 191 279 202 154 428 498 359 215
max dist (m) 8,697 37,650 9,923 155,481 12,746 37,824 17,111 162,582
time (min) 5.75 38.02 52.83 2978.22 213.71 663.75 1733.35 5287.52
GST nodes 5.2 · 105 3.1 · 106 5.1 · 106 3.6 · 107 2.5 · 106 1.6 · 107 2.3 · 107 1.9 · 108

6.3 Queries

Having the GST at hand, we can now answer queries with a tree traversal fol-
lowed by a single run of a shape-preserving Dijkstra. This is a dramatic improve-
ment compared to n necessary SPD runs using the naive approach. The effect
on the practical runtime is shown in Table 4. Using the combination of the GST
and one SPD, all queries could be answered in less than half a decisecond. This
results from the fact, that all GSTs have a very small depth, hence very few
comparisons are needed to find a certain pattern and moreover the SPD run
explores almost only the edges, that are part of the resulting trajectory. All in
all our approach can answer map matching queries up to 8000 times faster than
the naive approach and even for larger graphs this procedure might allow for
real-time query answering.



Table 4. Query times (in seconds) for answering map matching queries using different
approaches and comparison models. Timings are averaged over 1000 random queries.

ST MA BW SG

exact naive 7.8665 17.1836 36.7329 245.6335
GST+SPD 0.0011 0.0022 0.0045 0.0332

speed-up 7151 7810 8126 7398

t=5 naive 8.0324 19.0172 42.8134 261.1443
GST+SPD 0.0015 0.0038 0.0076 0.0458

speed-up 5355 5004 5633 5701

6.4 Accuracy

The quality of a path p′ resulting from a map matching procedure is conven-
tionally measured by the percentage of edges of the correct path p, that are not
matched by p′ (called AN ), and the percentage of the length of p, that could not
be covered by p′ (called AL). In our scenario there are two sources of errors for
matching paths extracted from the map: Firstly, paths with a too short encoding
length to be unique in the network cannot be matched at all, secondly a path
with a unique encoding might still allow for a small range of different path be-
ginnings (before the first inflection point) and path tails (after the last inflection
point). But based on the density of inflection points on shortest paths, these
disturbance sources have only a mild effect on the accuracy. For both quality
measures we never observed an error value greater than 0.06 for t = 5 and 0.04
for exact queries, with the AL value always being slightly better than AN . So
both error metric values are remarkably small for all considered graphs, even
under imprecisions. To mitigate the imprecision even further when determining
the current position of the vehicle, path prediction algorithms [4] can be used
on the basis of the matched trajectory.

6.5 Real-World Data

To demonstrate the practicability of our approach on real-world data, we col-
lected electronic compass measurements with our app (installed on a Nexus 4)
over a period of a month on the same trajectory (so 20 measurements in total).
The data was collected by bicycle, the travelled path includes streets and bicycle
paths. Figure 4 provides a visualization of the trajectory in our web application.
In Figure 5 we show a comparison of all introduced compass measurement tech-
niques supported by our app. The results implied that using the average over all
methods works best. (For AHRS, we tested several parameter combinations and
finally considered three of them useful. There might be of course better ways to
use the method.) As ground truth we used the representation of the trajectory
in the underlying network. Conducting our compass measurements, we observed
that the total travelled time and therefore the number of raw measurements
vary significantly (by up to 20%), but the number of inflection points is very
steady (11 for 18 out of 20 trajectories, 10 and 12 for the two remaining ones).



Fig. 4. GPS-based trajectory (green) visualized in the map on the left, and compass-
based measurements on the same trajectory presented in a pop-up on the right side.
The red box shows a zoomed-in version of part of the compass path to illustrate our
line smoothing technique. The overall shape is very faithfully preserved. The pink box
on the left shows a trajectory section where GPS measurements imply a curve, but the
compass path truthfully reports a straight line there. The black square on the right
shows a sharp turn which is not represented as single turning point in the compass
path. But as we use inflection point representation, this does not affect the encoding.

In the end, we could match 13 out of 20 trajectories to the ground truth using
an angle tolerance of 5◦. For the remaining ones, at least one inflection point
differed more from the ground truth, the maximum was at 22◦. Nevertheless,
considering the scenario where as soon as we found our position in the network
(using e.g. the first four inflection points) and then only update our position as
soon as new inflection points come in, we followed the correct trajectory in the
map from beginning to end for 19 out of 20 trajectories.



Fig. 5. Comparison of different compass measurement techniques and GPS based di-
rections on part of our test trajectory. We observe that in general the reported values
are very similar, with some outlier peaks for the Magnetometer and Accelerometer and
AHRS.

So there is a clear indication that compass paths in IPR can work as stand-
alone for precise localization (if the sensor quality is sufficient). Of course, experi-
ments on a single trajectory are not that meaningful. In future work, a large scale
study should be conducted to retrieve more information about compass-based
navigation. But seeing that the scheme works for bicycles already gives hope
that it might work even better for cars. As when going by bicycle one tends not
to follow lanes exactly and one has a larger degree of freedom on bicycle tracks
than cars have on streets.

7 Conclusions

We presented a complete pipeline to acquire compass data in a wireless manner,
to process it, and to use the resulting data for localization of a vehicle mov-
ing in a street network. One important aspect to make this approach practical
is our newly developed inflection point representation, which is robust against
different driving styles and time-dependent data sampling. To allow for real-
time localization, we designed a data structure based on generalized suffix trees,
which encodes the whole street network compactly, and allows to search for a
compass path in inflection point representation in fractions of a second. Future
work should include more real-world experiments, better sensor value trade-offs
(instead of the simple average we used), and compatibility tests with other (au-
tonomous) information sources.
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