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Abstract
We consider the following tokenization repair
problem: Given a natural language text with
any combination of missing or spurious spaces,
correct these. Spelling errors can be present,
but it’s not part of the problem to correct them.
For example, given: “Tispa per isabout token
izaionrep air”, compute “Tis paper is about to-
kenizaion repair”.

It is tempting to think of this problem as a
special case of spelling correction or to treat
the two problems together. We make a case
that tokenization repair and spelling correction
should and can be treated as separate problems.
We investigate a variety of neural models as
well as a number of strong baselines. We iden-
tify three main ingredients to high-quality to-
kenization repair: deep language models with
a bidirectional component, training the models
on text with spelling errors, and making use of
the space information already present.

Our best methods can repair all tokenization
errors on 97.5% of the correctly spelled test
sentences and on 96.0% of the misspelled test
sentences. With all spaces removed from the
given text (the scenario from previous work),
the accuracy falls to 94.5% and 90.1%, respec-
tively. We conduct a detailed error analysis.

1 Introduction

Tokenizing a given text into words is the first step in
many natural language processing applications, in-
cluding: search engines, translation services, spell
checkers and all kinds of learning tasks performed
on text. This tokenization is typically performed
by the following simple method or a variant of it:
define a set of word characters and take each max-
imal sequence of word characters as one token.1

For example, for

This algoritm runs in linear time

a simple such tokenization yields the six words

This, algoritm, runs, in, linear, time. (1)

1Some languages, like Chinese, do not use word delimiters
like spaces; they are out of scope for this paper.

Note the spelling error in the second word. Spelling
correction is not part of tokenization. We come
back to this important aspect in Section 1.2.

Missing and spurious spaces are common errors
in digital text documents. We refer to the union of
both types of errors as tokenization errors. Here is
a variant of the sentence above with one missing
space and one spurious space:

This algor itm runsin linear time (2)

In this paper, we consider the following tokeniza-
tion repair problem: Given a sequence of charac-
ters representing a natural language text, with an
arbitrary amount of missing and spurious spaces
and possibly also with spelling errors, compute
the variant of the text with correct spacing. For
example, given (2) above, compute (1).

Tokenization repair can be considered as a gener-
alization of the word segmentation problem, where
the text is given without any space information. In-
deed, we also evaluate our methods on this special
case in Section 4.

1.1 Sources of tokenization errors

The widely used PDF format stores no information
about spaces. Text is represented as characters with
bounding boxes. When extracting text from PDF
documents, the space positions must be inferred
from the distance between the characters’ bounding
boxes. This is a non-trivial and error-prone task
(Bast and Korzen, 2017).

Tokenization errors are also typical in texts
that are digitized by optical character recognition
(OCR) techniques. For example, tokenization er-
rors are known to be frequent in the ACL anthology
corpus (Nastase and Hitschler, 2018) and in digi-
tized newspapers (Soni et al., 2019; Adesam et al.,
2019). There is large body of research on OCR
error correction (Kumar, 2016). However, not all
methods can deal with tokenization errors, and it is
stated in Hämäläinen and Hengchen (2019) that:

”A limitation of our approach is that it cannot do
word segmentation in case multiple words have
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been merged together as a result of the OCR pro-
cess. However, this problem is complex enough on
its own right to deserve an entire publication of its
own and is thus not in the scope of our paper.”

Tokenization errors can also be found in human-
typed texts. The fraction of these errors among mis-
spellings was found to be 15% in Kukich (1992).

Tokenization errors degrade the performance of
any natural language processing (NLP) system, if
it does not account for them. A search engine
will not find “algorithm” in a document containing
“algo rithm”. Syntax parsers and word labelers will
not give the correct results if a word is split into
multiple words, or multiple words merged into one.
A text classifier based on word statistics or word
vector representations will fail to retrieve statistics
or vector representations for wrongly tokenized
words, which can result in wrong classifications.

1.2 Tokenization and Spelling Correction

It is tempting to regard tokenization repair as a spe-
cial case of spelling correction or to try to solve
both problems simultaneously. We next argue that
it makes sense to consider the two problems sepa-
rately and the rest of the paper provides evidence
that they can be considered separately.

All the approaches we consider in this paper can
be adapted to correct not only tokenization errors
but also spelling errors. For example, consider the
best approach from previous work: a left-to-right
character-based language model (that predicts the
next character from the previous characters) com-
bined with a standard beam search (which at each
point maintains the b best corrections of the se-
quence thus far); see Section 3.1. This method can
achieve good (not great) results for tokenization
and spelling correction, but only with a very large
b and a correspondingly impractically large run-
ning time. The reason is that when we cannot be
sure about the spaces, sub-sequences can be mis-
spellings of many words. For example, even when
allowing only one spelling error per token, “o the”
might be a misspelling of “of the”, “other”, “oath”,
etc. We come back to this issue in Section 4.

It is therefore not surprising that existing spelling
correction programs first tokenize the text (using
the simplistic approach described earlier) and then
correct the individual words. Some spell checkers
also repair tokenization errors, but only to a limited
extent. In Section 4, we evaluate the tokenization
repair capabilities of a popular word segmentation

tool and a popular spell checker. For spell check-
ers that disregard tokenization errors, tokenization
repair will improve the quality of the correction.

However, our evaluation shows that when sepa-
rating the two problems, tokenization repair must
consider that the text might have spelling errors.
The reader may wonder how it is possible to con-
sider spelling errors during tokenization without
fixing them in the first place. It is indeed one of
the insights from our paper that this is possible. In
a nutshell, models that are not aware of spelling
errors have a strong tendency to end a word after
a spelling error (because no known continuation
exists) or to wrongly merge misspelled words into
a word from the dictionary. We will discuss this in
more detail in Section 4.7.

1.3 Contributions

We consider these as our main contributions:
• We investigate the tokenization repair problem in
depth, providing several new insights, in particular
on: the complex interaction with spelling errors,
taking advantage of already existing spaces and the
importance of bidirectional models.
• We show that it is crucial that the language mod-
els are trained on text with spelling errors and that
the quality of the predictions does not deteriorate
much on test sequences without spelling errors.
This aspect was either disregarded in previous work
or it played only a secondary role.
• We point out the difficulties of using a bidirec-
tional model for tasks that involve changing the
sequence, and we show how to overcome them. In
previous work, forward models combined with a
beam search gave the best results.
• A crucial component of our best methods are
so-called penalties for inserting or deleting a space.
They are learned from the data and no hyper-
parameter tuning is required. Previous work re-
moves all existing spaces from the text in advance
and thus cannot make use of any correct tokeniza-
tion information that is already there.
• We provide an extensive evaluation on text with
and without spelling errors, various amounts of
spacing errors, and with various baselines, includ-
ing a commercial and an open-source product. We
also conduct a detailed error analysis.
• We make our code, data, benchmarks and trained
models publicly available under https://github.
com/ad-freiburg/tokenization-repair. It in-
cludes a Docker setup that allows an easy replica-
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tion of our results, and a web application to try out
our methods.

2 Related Work

A beam search with neural and character n-gram
language models is used for word segmentation
in Doval and Gómez-Rodrı́guez (2019). In Sec-
tion 4.7, we evaluate our own implementation of
this approach on our benchmark and we also com-
pare against their results on their benchmark. We
improve on their approach in several respects: inte-
grating a bidirectional model (which is not trivial),
considering the given spaces in the input (they re-
move all spaces), and explicitly considering typos
(they test their approach on tweets, but do not ex-
plicitly handle typos).

A beam search with a word bigram language
model, instead of a character-based language
model, is used in Mikša et al. (2010) to correct
missing spaces in Croatian texts that were digitized
by OCR.

Tokenization repair on the ACL anthology cor-
pus is done in Nastase and Hitschler (2018) as a
neural machine translation model translating from
the sequence without spaces to the sequence with
spaces. They also remove all spaces from the input
text, thus discarding valuable information. Unfortu-
nately, the materials and information in their paper
were not sufficient to evaluate their approach in our
setting or our approach in their setting. Neverthe-
less, in Section 4.7, we compare our results against
theirs as good as we can.

In Soni et al. (2019), n-gram statistics are used
to determine when to split an out-of-vocabulary
token. It was shown that the context provided by
the n-grams improves the results. By using neu-
ral language models, we extend the scope of this
context beyond the boundaries of n-gram models.

3 Approach

Our approaches are based on deep character-based
models, unidirectional and bidirectional. The unidi-
rectional models are combined with a beam search.
The bidirectional models can either repair a se-
quence directly or be combined with the unidirec-
tional models.

3.1 Character-based models

We model the strings as sequences of one-hot en-
coded characters, where we use the 200 most fre-
quent characters, while replacing the others by a

special character UNK for unknown characters.
Sentences are appended with start and end of sen-
tence special characters (SOS and EOS).

3.1.1 Unidirectional language models
Character-based language models estimate the
probability of a string to occur in some language
based on the probabilities of the individual charac-
ters in the string, using one of the following:

• pf (s|cb) is the probability that a character s
occurs after a context string cb.

• pb(s|ca) is the probability that a character s
occurs before a context string ca.

For example, given the string “The algorithm runs
in linear time.”, if the character s is the underlined
‘r’, then cb = “The algorithm ” and ca = “uns in
linear time.”.

Following Graves (2013), we implement these
models as recurrent neural networks, using LSTM
cells. We adapt an architecture consisting of an
LSTM cell of 1024 units, followed by a dense layer
(with 1024 units and ReLU activation function),
then a softmax output layer for character classi-
fication. This architecture consists of 6,287,563
trainable parameters, which are trained using cate-
gorical cross entropy as a loss function. Two sepa-
rate models with this architecture are implemented
to process a sequence forwards to predict pf (s|cb)
or backwards to predict pb(s|ca), using the same
principle.

3.1.2 Bidirectional sequence labeling model
We utilize a bidirectional model that predicts the
probability of having a space before a given char-
acter when the whole sequence of non-space char-
acters is given as input. We adapt an architecture
consisting of a bidirectional LSTM cell of 1024
units, followed by a dense layer (with 1024 units
and ReLU activation function), then a sigmoid
output for space classification. This architecture
consists of 12,158,980 trainable parameters, which
are trained using binary cross entropy as a loss
function.

The model can repair a string by estimating the
space probability pbi,i at every position i in the se-
quence without spaces. It uses two thresholds Tins
and Tdel and inserts a space when pbi,i > Tins and
deletes a space when pbi,i < Tdel . The values of
Tins and Tdel are chosen such that the F-score (de-
fined in Section 4.5) is optimized on a small train-
ing set of pairs of input sequences with correspond-
ing ground truth sequences.
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3.2 Beam search
Beam search is a search algorithm similar to
breadth-first search, but instead of maintaining all
search states at a given level, it maintains only the
best b states, which correspond to an estimation of
the best b partial solutions (Medress et al., 1977).

Correction procedure: Given a mistokenized
string Q, with its corresponding sequence of m
non-space characters T (we refer to Ti to be aligned
with Qj), the procedure executes beam search for
m levels. At level i, given a partial solution’s
search state (Si−1, Ri−1) of accumulated score and
solution string respectively, we extend it based on
two candidates:
1. Adding Ti without space, which results in:

Si = Si−1 − log pf (Ti|Ri−1) + Pdel

Ri = Ri−1Ti
2. Adding a space before Ti, which results in:

S′i = Si−1 − log p (Ti|Ri−1) + Pins

R′i = Ri−1 Ti
Where p (Ti|Ri−1) is the probability of adding a
space before Ti, given by:

p (Ti|Ri−1) = pf ( |Ri−1) · pf (Ti|Ri−1 )

Pdel and Pins are non-negative penalties that are
used only when the introduced extension is not
originally in Q, otherwise they are assumed to be
0. In other words, Pins is used when Qj−1 6=
and Pdel is used when Qj−1 = . They aim to
regularize the effect of making too many edits.

The final solution R = (R1, ..., R|R|) is the
estimated corrected sequence of lowest penalized
negative log-likelihood score (highest probability):

− log p(R) + ninsPins + ndelPdel

where nins is the number of space insertions and
ndel is the number of space deletions, and:

p(R) =

|R|∏
i=1

pf (Ri|R1, · · · , Ri−1)

During execution, we additionally keep the internal
states of the LSTM cells with the beam search’s
states (Si, Ri), in order not to recompute the candi-
date probabilities using the whole previous context,
but rather predicting them using a constant number
of operations. Consequently, the time complexity
is O(|Q| · b), because we process 2b candidates at
m levels (m ≤ |Q|) using a constant number of
LSTM predictions. We use a beam size b = 5 in
our implementation. As a result, the algorithm runs
in linear time.

Variants: We utilize the following variants of the
beam search (BS) procedure:
1. BS fw: Left-to-right via the forward model.
2. BS bw: Right-to-left via the backward model.
3. 2-pass BS: Double pass using 1. then 2.
4. BS bidir: Left-to-right combining the forward
model with the bidirectional model introduced in
section 3.1.2. For this variant, the update formulas
of the scores are the following:

Si = Si−1 − log(pf (Ti|Ri−1) · (1− pbi,i)) + Pdel

S′i = Si−1 − log(p (Ti|Ri−1) · pbi,i) + Pins

Penalty optimization: The penalties Pins and
Pdel are set using a small training set of pairs of
input sequences with corresponding ground truth
sequences. We simulate a beam search under the
assumption that the left context is always predicted
correctly, and that the procedure takes a decision
after processing the next two characters. Given the
ground truth string Q, for every non-space charac-
ter Qi and its previous non-space character Qj , the
space probability ps and non-space probability pn
are computed:

ps = p (Qi|Q1:j) · pf (Qi+1|Q1:j Qi)
pn = pf (Qi|Q1:j) · pf (Qi+1|Q1:jQi)

If the space is present in the input sequence, the
scores S and S′ of the candidate sequences without
and with space are:

S = − log pn + Pdel

S′ = − log ps

The space gets deleted if Pdel < log pn − log ps.
Furthermore, If the space is not present in the input
sequence, the scores are:

S = − log pn
S′ = − log ps + Pins

The space gets inserted if Pins < log ps − log pn.
Depending on whether the space is present in the
ground truth sequence, the corresponding edit is a
true positive or false positive. Finally, the F-score
is evaluated for every penalty value that makes an
example flip, and the optimal penalties are chosen.

The penalty optimization for the backward pass
is analogous, but using the predictions of the for-
ward pass on the penalty training set as inputs, and
minimizing the sum of false positives and false neg-
atives as a proxy of maximizing the overall F-score.

3.3 Baseline approaches
We utilize baselines from three different classes:
greedy, dynamic programming and commercial.

4



3.3.1 Greedy bigram model
We tokenize the training data with the NLTK tok-
enizer (Bird et al., 2009) and count unigram and bi-
gram frequencies. The greedy corrector processes a
sequence from left to right. Two tokens get merged
if the merged unigram is more frequent than the
bigram. A token gets split into two, if the bigram
frequency of the split is greater than the token’s
unigram frequency. A rule-based postprocessing
deals with spaces before and after punctuation.

3.3.2 Dynamic programming bigram model
This baseline is a Viterbi algorithm (Viterbi, 1967)
with a word bigram model (Jurafsky and Martin,
2009). First, all possible words (substrings of
length ≤ 20 with non-zero unigram frequency)
in the sequence without spaces are located. The
states of the Viterbi algorithm are equivalent to the
words. A transition between two states is possible
if the next word starts at the end of the first word.
State transition probabilities are determined by a
combination of a unigram and a bigram model:

p(wi+1|wi) =
1
2(pbi(wi+1|wi) + puni(wi+1))

The output is the most likely segmentation of the
sequence without spaces into words.

3.3.3 Wordsegment
Wordsegment is an open-source library, based on
Halpern (2015), that uses precomputed frequencies
of unigrams and bigrams to segment words.

3.3.4 Google
To compete with a commercial spell checker, we
copy the erroneous sentences into a Google docu-
ment2 and manually apply all suggested edits that
comprise splitting or merging words. When sugges-
tions were ambiguous with respect to the space ed-
its, or close to the correct solution (for example, the
suggestion “gave up” for the input “gavemeup”),
we decided in favour of the spell checker.

4 Evaluation

4.1 Dataset

We use Wikipedia as a text corpus to evaluate
our approaches. We extracted the articles from
the Wikipedia dump of June 20, 20193 using
WikiExtractor (Attardi, 2017). The articles were
divided into development and test sets containing

2https://docs.google.com, accessed April 10,
2020

3https://dumps.wikimedia.org/enwiki

10,000 randomly selected articles each, and the
remaining as a training set. The articles were
split into paragraphs, and development and test
paragraphs further split into sentences with the
NLTK sentence segmenter (Bird et al., 2009).
All sequences were stripped from leading and
trailing spaces, and empty sequences removed.
All types of spaces, like non-breaking or thin
spaces, were replaced by regular spaces. We ex-
cluded sentences matching the regular expression:
“ [.,;]( |$)|<|>|\"\"|\(\)| ’ |\([,;]“
These are incomplete sentences or sentences con-
taining Markup, which occured due to incomplete
extraction by WikiExtractor or wrong sentence
splits. One sequence was chosen randomly per
development article and test article. We thus
obtain 43,103,197 sequences for training, 10,000
for development and 10,000 for test. We also
select 10,000 sequences from the training set for
optimizing the Tins , Tdel , Pins and Pdel described
in Sections 3.1.2 and 3.2.

4.2 Typo noise induction
To test whether our approaches work in the pres-
ence of misspellings, we induce randomized noise
into the ground truth sequences. Each token gets
misspelled with probability pspell. A misspelling
is one of the following operations: insertion of a
lowercase character, deletion of an alphabetic char-
acter, replacement of an alphabetic character by
a lowercase character, swap of two neighboring
alphabetic characters.

4.3 Tokenization error induction
To create test benchmarks, we introduce random
tokenization errors into the sequences. A parameter
p controls the tokenization error rate. Let Nt be
the number of tokens in the dataset, Nms the num-
ber of spaces and Nes the number of neighboring
non-space character pairs. We remove each space
in a sequence with probability p·Nt

2·Nms
and insert a

space between every neighboring non-space char-
acter pair with probability p·Nt

2·Nes
. This results in

a balanced number of inserted and deleted spaces.
The expected number of errors is equal to p ·Nt.

4.4 Benchmarks
We prepare ground truth sequences with varying
typo noise levels pspell ∈ {0, 0.1} for the penalty
training, development and test sets. For each of
the aforementioned sets and typo noise level, we
create three benchmarks with varying amounts of
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tokenization errors, by applying the tokenization
error induction with p ∈ {0.1, 1} , in addition to a
benchmark with no spaces at all.

4.5 Metrics for tokenization repair
Given a corrupt text C, a ground truth text T and a
predicted text P , we can frame a repair algorithm
as a classifier which predicts a set of edit operations
that ideally would transform C into T . We use two
metrics for the evaluation: F-score and sequence
accuracy.

F-score: We define edits(A,B) as the edit oper-
ations that transform A into B. An edit operation
is either the insertion or deletion of a space. If we
let C = edits(C, T ) be the ground truth edit opera-
tions and P = edits(C,P ) the predicted edit oper-
ations, the number of true positives is TP = |C∩P|,
the number of false positives is FP = |P \ C| and
the number of false negatives is FN = |C \P|. The
binary classification metric F-score is the harmonic
mean of precision and recall, and is computed with:

F (T,C, P ) =
2 · TP

2 · TP + FP + FN

Sequence accuracy: The sequence accuracy
is the fraction of sequences that are completely
corrected (P = T ). A sequence is correctly
predicted if and only if the set of predicted
operations is exactly equal to the set of ground
truth operations for that sequence.

Before evaluating on the benchmarks with
spelling errors, we remove from the predicted
sequences, ground truth sequences and wrongly
tokenized sequences the non-space characters that
were introduced as a spelling error, and resulting
multi-spaces. This allows for ambiguous cases like
“hellox world”, “hello xworld” or “hello x world”
to be accepted as multiple correct solutions for
the same sentence (after removing the “x” and the
multi-space, all three sequences become “hello
world”).

4.6 Models training
We train forward models, backward models and
bidirectional models. An evaluation of the lan-
guage models is given in Table 1.

Additionally, typo-robust versions of these mod-
els are trained, where the training happens on mis-
spelled sequences. In this setting, the misspelled
sequences are constructed by the mechanism ex-
plained in section 4.2, with pspell = 0.2.

Model Acc Top-5 CCE F-score
forward 71.30 90.47 96.3 89.20
backward 70.81 90.56 97.4 95.84

Table 1: Results in percentages of accuracy, top-5 accu-
racy, categorical cross entropy and spaces F-score for
the language models on the development set.

All six models are trained for one epoch on the
training data, using a GeForce Titan X GPU. Train-
ing a unidirectional model takes 27 hours, while
the bidirectional model takes 64 hours. The train-
ing is performed using the Adam optimization al-
gorithm (Kingma and Ba, 2015), with learning
rate α = 0.001, and mini-batch size 128. The se-
quences were cut after 256 characters, while shorter
sequences were padded with EOS symbols that got
masked in the loss function. The models are imple-
mented using TensorFlow (Abadi et al., 2015).

For the benchmarks with p ∈ {0.1, 1} we opti-
mize the penalties Pins and Pdel separately for all
approaches. For the benchmarks with all spaces
removed, we set Pins = Pdel = 0.

4.7 Results and discussion

Our main results are shown in Table 2, which pro-
vides F-scores and sequence accuracies for all the
approaches we implemented, on all benchmarks.
We use a beam size of b = 5 for all beam search
approaches; increasing this to b = 10 has shown
only minimal improvements while doubling the
running time. We first discuss the main takeaways
from Table 2. Along with that and afterwards, we
discuss the other tables (comparison to previous
work, error analysis, running time).

The first takeaway from Table 2 is that the for-
ward beam search combined with a bidirectional
model (BS bidir) is the clear winner in all sce-
narios (with or without typos, with any amount
of tokenization errors). In particular, it beats all
the baseline methods by a wide margin, as well as
the unidirectional beam search methods. The best
method from previous work (Doval and Gómez-
Rodrı́guez, 2019) is an instance of unidirectional
beam search. In Table 5, we explicitly compare our
implementation of their method to their implemen-
tation on their benchmark. Our implementation
of their method has better accuracy; we suspect
because we use more training data. The results of
their method on their benchmark is better than on
our benchmark; we suspect because their bench-
mark (news articles) uses cleaner language and is

6



F-score sequence accuracy
no typos 10 % typos no typos 10 % typos

approach 10 % 100 % no 10 % 100 % no 10 % 100 % no 10 % 100 % no
do nothing - - - - - - 34.86 3.03 4.10 34.89 3.22 4.10
greedy 85.47 56.21 20.46 68.73 53.68 19.93 76.69 9.96 12.96 46.43 8.53 11.42
bigram DP 92.48 99.20 99.16 68.24 95.56 95.39 86.16 86.16 86.16 45.61 45.61 45.61
wordsegment 58.90 93.48 92.97 45.94 89.48 88.51 41.12 41.12 41.12 22.37 22.37 22.37
Google 1 89.78 65.43 18.40 82.95 53.14 15.14 82.00 15.00 15.00 73.00 10.00 13.00
bidirectional 98.86 99.72 99.67 93.38 98.27 98.01 97.05 93.80 93.15 84.33 69.27 67.62
bidir. robust 98.67 99.65 99.59 97.42 99.30 99.20 96.52 92.23 91.84 93.33 84.90 84.17
BS fw 98.68 99.66 99.61 93.86 97.96 97.53 96.59 92.86 92.22 85.29 67.71 65.13
BS bw 98.61 99.68 99.59 93.33 97.87 97.49 96.41 93.05 92.25 84.11 67.00 64.99
BS fw robust 98.56 99.61 99.54 97.98 99.36 99.23 96.39 91.65 90.88 94.98 87.67 86.16
BS bw robust 98.54 99.59 99.51 98.14 99.35 99.21 96.31 91.62 90.72 95.32 87.34 85.85
2-pass BS 98.70 99.71 99.66 94.01 98.30 98.01 96.70 93.68 93.17 85.77 71.73 69.99
2-pass BS robust 98.58 99.65 99.59 98.07 99.46 99.37 96.41 92.48 91.88 95.27 89.36 88.49
BS bidir 99.01 99.77 99.74 95.66 98.69 98.44 97.49 94.79 94.47 89.23 76.18 74.07
BS bidir robust 98.85 99.73 99.68 98.39 99.57 99.49 97.11 93.92 93.54 96.04 91.05 90.11

Table 2: F-scores and sequence accuracy percentages for all models and all benchmarks. The benchmarks either
contain no typos or 10% chance of introducing a typo. The tokenization errors either have p as 0.1, 1.0 or all spaces
removed. The F-scores are micro-averaged across the test set. The difference of the sequence accuracy of the best
approach compared with all other approaches is statistically strongly significant (p < 0.01 with a paired two-sided
randomization test). 1 Google’s tokenization repair was manually evaluated on 100 development sequences.

Error type w/o with Prediction Ground T.
Compound 29% 24% box set boxset
Foreign 21% 18% De Clercq DeClercq
Entities 19% 18% First Energy FirstEnergy
Typo ambig. - 14% be a bear
Punctuation 19% 12% (March) ( March )
Measures 8% 6% 10 m 10m
Abbrev. 2% 4% K. K. K.K.
Unk.alphabet 2% 2% Rev-erb α Rev-erbα

Table 3: Error analysis with relative frequencies and
examples for our best approaches on sentences with 0.1
tokenization error rate, without and with 10% typos.

thus simpler. In Section 2, we also mention the
recent work from Nastase and Hitschler (2018).
Unfortunately, their dataset has no ground truth, so
we cannot evaluate our methods on it. By inspect-
ing some of their processed files, we find that their
method introduces many new tokenization errors.

It might look obvious that the bidirectional meth-
ods are the best, but as we explain next it is not ob-
vious. This might also be the reason why previous
work used unidirectional methods. A unidirectional
model has the advantage that the tokenization er-
rors are incrementally fixed from left to right (or
from right to left in a backward model), so that the
language model predictions can be based on text
that is (almost) free from such errors. However, the
text after the current position has not yet been re-

paired, so that predictions from the other direction
are based on text with tokenization errors. Using
these predictions actually deteriorates the quality
of the unidirectional methods. Our trick was to
combine a unidirectional model that makes use of
the space information with a bidirectional model
that disregards all space information and thus does
not have the aforementioned problem. Our second-
best approach (2-pass BS) overcame this by em-
ploying two separate unidirectional passes.

The second takeaway from Table 2 is that train-
ing the models on text with spelling errors (the
methods named “robust”) is crucial for a good to-
kenization quality. Conversely, when using these
models on text without spelling errors, the quality
is very close to that of the models trained on text
without spelling errors. A detailed error analysis
of the non-robust methods shows that these meth-
ods have a strong tendency to split words with a
typo because there is no meaningful continuation
(e.g., “unwnted pregnancies” is wrongly repaired
to “unw nted pregnancies”) and to wrongly merge
misspelled words when they happen to form a cor-
rect word (e.g., if “as well” is mistyped as “s well”,
it is wrongly repaired to “swell”).

The third takeaway from Table 2 is that tokeniza-
tion repair is much harder when there are many
tokenization errors. This is not surprising, yet pre-
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vious work chose to remove all spaces from the
text. This simplifies the approaches somewhat (one
only has to predict space insertions, no space dele-
tions), but the price is much worse results when
there were actually only few tokenization errors.
Our approach regulates this via the two penalties
Pins and Pdel described in Section 3.2, which are
optimized on a separate small penalty training set.
We also conducted a sensitivity analysis, which
shows that our results are very robust against small
changes in these penalties. When Pins = Pdel = 0,
spaces in the given text are ignored (which is equiv-
alent to removing all spaces from the text). This
can also be used as a default setting when there are
many tokenization errors.

Also not surprisingly, text with spelling errors
is more difficult to repair. On text with spelling
errors and no spaces, the sequence accuracy of our
best method drops to 90.1% (which is still very
good compared to the 65.1% of the BS fw method
though). The reason is that the combination of
spelling and tokenization errors can create ambigu-
ous situations, which are very hard to fix. For
example, deleting the ‘r’ in “The stems bear single
flower heads” is fixed as “The stems be a single
flower heads”.

Table 3 shows the result of a detailed error analy-
sis of our best method. In particular, we found that
the beam search with a bidirectional model does
a much better job on correctly tokenizing com-
pound words and foreign words. In contrast, a
method such as 2-pass BS merges “off season”, and
splits “northeastern” and “Tornakápolna”. How-
ever, some compound words are difficult for all
models. For example, “Waikiki BeachBoys” is a
baseball team and “The Beach Boys” is a rock band.
Fixing these correctly would require explicit knowl-
edge of these entity names. There are also several
inconsistencies in the ground truth, for example
regarding spacing near commas and full stops.

Table 4 shows the average running time for our
main methods on a Nvidia GTX 1060 GPU. We
also implemented a variant of BS fw that uses its
predictions to fix both tokenization and spelling
errors. The results are comparable to those of the
method trained on text with spelling errors. How-
ever, the price is a much larger beam size (b = 100
instead of b = 5) because of the exploding num-
ber of possible interpretations. Consequently, the
running time of this approach increases by a factor
of more than 20, which makes it impractical for

bidir. BS 2-pass BS BS bidir
runtime (s/KB) 0.45 2.03 3.95 2.61

Table 4: Runtimes averaged on all benchmarks.

Approach F-score Seq.acc.
Doval and Gómez-Rodrı́guez (2019) 99.63 92.2
BS fw 99.81 95.4
BS bidir 99.84 96.4

Table 5: Evaluation (percentages) on the English bench-
mark by Doval and Gómez-Rodrı́guez (2019).

actual applications.

5 Conclusion

We introduced tokenization repair as an important
pre-processing step for all kinds of NLP applica-
tions. Our best method uses a deep character-based
language model, combining a unidirectional beam
search with a bidirectional model. It is crucial that
the unidirectional model takes the existing space
information into account, while the bidirectional
disregards it. It is also crucial that the models are
trained on text with spelling errors.

Our best approaches improve significantly over
previous work and several strong baselines. There
is still room for improvement, especially in a sce-
nario with spelling errors and many tokenization
errors. However, we show that the remaining errors
are hard, with many ambiguous situations.

We paid attention to practical running times: all
our methods have linear complexity, using a few
seconds per 1,000 characters. However, there is
also room for improvement here and it would be
interesting to investigate whether a similar quality
can be achieved with much faster algorithms.

We made a case that the problem should and can
be separated from that of spelling correction. In
particular, our study makes it clear that tokeniza-
tion repair is an interesting, challenging and prac-
tically relevant problem on its own. That being
said, it would be interesting to follow up on this
study and investigate how to best attack spelling
correction after tokenization repair, using methods
similar to or inspired by the ones developed in this
paper. One of the main challenges will be the huge
search space. Reducing it sufficiently will be key
for methods with a practical running time.
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