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ABSTRACT

We present new generic methods to efficiently draw schematized
metro maps for a wide variety of layouts, including octilinear, hex-
alinear, and orthoradial maps. The maps are drawn by mapping the
input graph to a suitable grid graph. Previous work was restricted
to regular octilinear grids. In this work, we investigate a variety of
grids, including triangular grids and orthoradial grids. In particular,
we also construct sparse grids where the local node density adapts
to the input graph (e.g. octilinear Hanan grids, which we introduce
in this work). For octilinear maps, this reduces the grid size by a
factor of up to 5 compared to previous work, while still achieving
close-to-optimal layouts. For many maps, this reduction also leads
to up to 5 times faster solution times of the underlying optimization
problem. We evaluate our approach on five maps. All octilinear
maps can be computed in under 0.5 seconds, all hexalinear and
orthoradial maps can be computed in under 2.5 seconds.

CCS CONCEPTS

+ Human-centered computing — Graph drawings; - Mathe-
matics of computing — Approximation algorithms; Integer
programming.
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1 INTRODUCTION

Drawing schematized metro maps is a well-studied topic [37]. The
prevalent layout is octilinear, where segment orientations are mul-
tiples of 45 degrees. Previous work computed such maps via an
optimal topological embedding (called image in this work) of the
input graph G in a regular octilinear grid graph I (called the base
grid graph or just base grid) that covers the padded bounding box
of G [8]. Two approaches to compute that image were presented:
an integer linear program (ILP) and an approximation algorithm
based on the computation of shortest paths in the grid graph. This
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Figure 1: The Stuttgart light rail network rendered in an or-
thoradial fashion by our approach in 1.9 seconds.

work had the following limitations:

(1) Grid Graph Size. For sparse areas of the input graph, the oc-
tilinear grid graph I' was unnecessarily dense, which negatively
impacted solution times, in particular for the ILP approach.

(2) No Layout Flexibility. The approach was restricted to octilinear
metro maps, although other layout types have recently found some
research interest.

(3) Various Imperfections. The approximation algorithm did not al-
ways find a feasible solution. The proposed methods only worked
for input graphs with a node degree of up to 8.

1.1 Contributions
We fix all of the problems mentioned above:

(1) We investigate a variety of grid graphs suitable for octilinear
maps: grids cropped to the convex hull of the input graph, quadtree-
based octilinear grids, and a new kind of grid graph which we
call octilinear Hanan grid; see Figure 2 for examples. The latter
is inspired by the well-known fact that an ordinary Hanan grid,
constructed by drawing horizontal and vertical lines through an
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Figure 2: The tram network of Freiburg as an octilinear drawing, rendered using an integer linear program (ILP) on four base
grid graphs (depicted in gray): (1) a full octilinear grid graph covering the padded bounding box of the input graph, (2) an
octilinear grid graph covering the convex hull of the input graph, (3) an octilinear grid graph built from a quadtree populated
with the input nodes, (4) a grid graph built from the octilinear Hanan grid of the input nodes, cropped to its padded bounding
box. For (2) and (4), the impact of the sparse grid graph on the solution quality was minimal (see Table 2 for details).

input point set P, contains a rectilinear minimum Steiner Tree for P
[18]. Our grids are sparse in the sense that the local node densities
correspond to those of the input graph. We show that, on average,
our best-performing sparse grids achieve solutions within 2% of
the optimum.

(2) To compute hexalinear and orthoradial maps, we use triangu-
lar and orthoradial grid graphs, respectively. The orthoradial grid
consists of concentric rings and rays, where the number of nodes
per ring depends on the ring radius; see Figure 12. We are able to
compute all our maps in under 2.5 seconds. This is the first method
to produce orthoradial metro maps that respect all the constraints
originally established for octilinear embeddings in [29].!

(3) We show how constraint relaxation can be used to ensure that a
feasible solution is always found. We describe a node-splitting tech-
nique that enables our approach to handle arbitrary node degrees
in the input graph.

1.2 Related Work

Our work is strongly related to previous work on map schematiza-
tion. Prior to metro map drawing, the focus was on schematizing
road networks. In [13, 14], general steps for this task were described.
In [24], the schematization of a polyline into segments following a
predefined set of orientations was studied. Local-search techniques,
sometimes combined with probabilistic techniques (e.g. simulated
annealing) were described in [4], [36], and [1]. Mathematical prop-
erties of topology-preserving octilinear road or railroad maps were
studied in [11], and an O(n log® n) algorithm was presented (which
guaranteed feasible, but not necessarily optimal solutions). Schema-
tization based on the concept of strokes (a decomposition of the
input graph into simple paths) was investigated in [11] and [33].
The problem of finding metro map embeddings was formally
introduced by Hong et al. [19, 20] and a spring layout algorithm was
described. An often-used preprocessing step used in later works is
to contract input nodes of degree 2 prior to schematization. The
contracted nodes are then later re-inserted equidistantly into the

In a nutshell: no crossings, preserve the (circular) edge order at nodes, adhere to the
given layout, nodes at least a certain distance apart, as small as possible: number of
bends, node displacement, segment length.
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final drawing. We call this the degree-2 heuristic. In [22], a polyline
simplification method for metro map generation was proposed. To
consider networks, an input edge ordering was determined, and
the corresponding polylines then simplified in this order. Stott and
Rodgers used a local search to find optimal metro map embeddings
by iteratively moving vertices on a grid [31]. This was later refined
by moving entire clusters of nodes [32]. Nollenburg and Wolff [29]
defined a set of hard and soft constraints for visually pleasing octilin-
ear metro map embeddings.! They presented a mixed-integer linear
program (MIP) to find optimal maps adhering to these constraints.
Several works then built on this MIP: In [30], it was extended to
consider labeling. In [23], it was altered to preserve shortest paths
in the input line graph (to avoid the distortion of travel distances).
Wau et al. [39] added the ability to select a single focus line, which is
then rendered horizontally. In [38], the MIP was extended to keep
enough space for large pictorial station labels. The spring layout
algorithm first described in [19] was reconsidered in [12], with
greatly improved results. In [34], a fast octilinearization approach
using least-square optimization was described, but did not guaran-
tee octilinearity. Our approach was first described in [8] and will
be described in greater detail in Section 1.3. The main difference to
previous work is that we search for octilinear drawings (allowing an
arbitrary number of bends per segment), not octilinear embeddings
(allowing only straight segments).

There has also been some interest in drawing schematic maps
with non-octilinear layouts. A force-based approach to move the
control points of cubic Bézier curves to arrive at curvilinear layouts
was described in [15]. In [35], a stroke-based approach to draw
maps consisting of circular arcs was presented. In [25], the MIP
from [30] was modified to render k-linear layouts (where edge
orientations are multiples of 360/2k). Recently, orthoradial metro
maps have also received research attention [37]. In [5] it was no-
ticed that orthoradial maps may be interpreted as orthogonal maps
on a cylinder and that a bend-free planar orthoradial drawing has
a combinatorial representation based on the angles of adjacent ver-
tices. In [27], polynomial-time algorithms to obtain and to decide
whether such a representation is valid were described. Finding a
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Figure 3: Finding an octilinear drawing for an input graph
G using the approach from [8]: an octilinear grid graph T is
build to cover the (padded) bounding box of G. Each input
node is assigned a set of candidate grid nodes. Line bends in
T are penalized by special turn edges, and grid node displace-
ment are penalized by special sink edges (not depicted). We
then search for the optimal set of non-intersecting image
paths, resulting in the octilinear metro map image (V, P).

representation with minimized edge bends was left as an open ques-
tion. In [26], an ILP was given to render orthoradial drawings with a
minimum number of edge bends (other aspects were not optimized,
and a minimum distance between nodes was not guaranteed). In
this work, we will show that our own method is able to both render
orthoradial and hexalinear maps.

A strongly related problem is that of finding optimal line or-
derings on segments of the (not necessarily schematized) network.
There are several slightly different concepts of what constitutes
optimality. In [10], lines were allowed to cross on edges, but not on
nodes, and the number of crossings was minimized. This was later
called the Metro Line Crossing Minimization (MLCM) problem [9],
and an ILP for this (NP-hard) problem was given in [3]. Polynomial
algorithms for restricted cases were developed in [2, 9, 16, 28]. An
alternative formulation (the Metro Line Node Crossing Minimiza-
tion problem, MLNCM), where lines cross at nodes, but not on
edges, was given in [6]. The concept of additionally minimizing line
separations was also introduced and an ILP for a weighted version
of MLNCM both with and without line separations was described.
In [7], this was extended by several simplification rules to speed
up the optimization. Finally, [17] considered a variant in which the
number of nodes where crossings occur was minimized. We rely
on previous work in [6, 7] to optimize line orderings.

For an extensive recent overview over the current state of re-
search regarding metro map drawing we refer to [37].

1.3 Definitions and Overview

We use the following basic notation: As input, we get an undirected
labeled graph G = (V, E, L). V may be understood as stations but
may also contain non-station intersections. The edges E are con-
nections between nodes, and each edge e is labeled with lines L(e)
traveling through them. We then search for a metro map drawing
D(G).

The approach originally described in [8] renders octilinear metro
maps by searching for the optimal topological embedding of an
input graph G in a grid graph T covering the padded bounding box
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Figure 4: Left: Grid redundancy problem. Although the op-
timal metro map image of the input graph G is obvious, we
still require a full grid graph with 49 nodes and 156 edges.
Right: Node density problem. The grid graph is not dense
enough to render the input graph without extreme displace-
ment.

of G. A topological embedding (often called a subgraph homeo-
morphism) is a pair of injective mappings (V, ), where V maps
vertices of G to image vertices of I', and # maps edges of G to
image paths in I' [21]. In this work, we call (V, P) the image of G
in T. The image path P({u, v}) of an input edge e = {u, v} must
start at V' (u) and end at V(v). To preserve the input topology, we
require image paths to be vertex-disjoint. Additionally, the circular
orderings of edges at input nodes must be preserved. A drawing
D(G) can be trivially extracted from (V, P) by converting the im-
age paths # into polyline segments. The assignment of input nodes
to grid nodes is unrestricted, but the geographical distance to the
original position is penalized. While the grid cell size may be chosen
freely, it was observed in [8] that choosing the average distance
between adjacent input nodes works well in practice. Each grid
node is extended by 8 port nodes, connected to the original grid
node by weighted sink edges which model displacement costs (see
Figure 12 for an example). To be able to penalize line bends in the
final drawing, the port nodes are pairwise connected by bend edges,
making it possible to add penalty costs to bends. The modeling
of these line bend costs is similar to the modeling of turn costs
in transportation networks, but does not require a directed graph.
Each grid edge may additionally be assigned an offset weight, for
example to prefer diagonal, horizontal or vertical edges, to prefer
edges close to the original line course, or to avoid obstacles like
rivers, lakes, or coastlines.

1.3.1 Edge Routing. The optimal metro map image is then con-
structed by routing all input edges through I'. Figure 3 gives an
example. An image path P(e) for an edge e = {s,t} is then the
shortest path through I' connecting two sets S and T of grid node
candidates which does not cross any other path, and thus optimizes
the path length, the node displacements and the number and acute-
ness of bends simultaneously. The start and end nodes of P(e) are
the image nodes for s and t. The sets of grid node candidates S
and T may be restricted to a fixed radius around the input node
positions to speed up the computation.

1.3.2  Finding Optimal Metro Map Images. In [8], an integer lin-
ear program (ILP) was described to find optimal images. As this
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ILP turned out to be too slow (solution times ranged from several
minutes to 19 hours), an approximate approach was developed in
which image paths were routed iteratively through the grid graph
using Dijkstra’s algorithm. The routing followed a predetermined
ordering of the input edges which was based on a heuristic value of
their importance. If no feasible solution could be found using this
ordering, random orderings were tested until a feasible solution
was found. To preserve the input topology, grid edges already used
by an image path, as well as crossing diagonal grid edges, were
outfitted with infinite weights for later iterations. Edges which
would violate the edge orderings at nodes in the input graph were
also outfitted with infinite weights for later iterations. As a final
polishing step, a local search (steepest ascent hill-climbing) was
added. Station labels were added after an optimal octilinear layout
was found. The quality of the approximate approach was found to
be comparable to the optimal solutions, with drastically improved
solution times (for medium-sized networks, a map was typically
found in under one second). If the degree-2 heuristic was used, the
resulting segments were sometimes too short to hold all contracted
nodes with a minimum distance. For the approximate approach, it
was therefore experimented with an additional spring-force based
density penalty added to segments which were too short.

1.3.3  Grid Density And Redundancy Problems. A problem with
the original approach is that the octilinear base grid graph may
not be dense enough to render certain parts of the input graph
without extreme displacement. The grid density may also be highly
redundant. Figure 4 gives two examples. If the input graph G is very
simple (e.g. just a single diagonal edge), building a full grid for the
padded bounding box of G is unnecessary, as the optimal octilinear
representation of G is obvious (Figure 4, left). On the other hand,
if node densities in G are heterogeneously distributed, we might
chose a grid cell size too small (Figure 4, right). We are therefore
interested in techniques that produce adaptive base grids, with
grid densities correlating to the node density of the input graph.
Octilinearity should still be guaranteed.

1.3.4 Alternative Layouts. The original approach only considered
octilinear maps. In principle, it works on arbitrary base graph,
and could therefore be used to generate schematic transit maps
following other base grid types. In this work, we experiment with
orthoradial and hexalinear base grids.

1.3.5 Outline. The remainder of this work is organized as follows:
In Section 2, we describe how to handle cases where the input
graph has a higher maximum node degree than the base grid graph.
Section 3 explains how we apply constraint relaxation to prevent
stalling of the approximate approach on sparse base grid graphs,
or base grid graphs with a low maximum node degree. Section 4.1
describes how to reduce the size of the base grid graph by cropping
not to the padded bounding box of G, but the padded convex hull.
We will then discuss grid graphs based on quadtrees and octilinear
Hanan grids in Sections 4.2 and 4.3. In Sections 5.1 and 5.2, we will
describe two alternative base grid types. All base grids will finally
be experimentally evaluated in Section 6.
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Figure 5: Left: Input node v has a degree of 6, prohibiting
an orthoradial layout. Right: We keep the first (in clockwise
order) 3 adjacent edges of v, combine the lines of the remain-
ing edges e4, e5 and eq into a single new edge f and connect
it to a new non-station node v’.

2 NODE SPLITTING

Naturally, octilinear metro maps can only be drawn for input graphs
with a maximum node degree less than 9. Real-world transportation
networks typically satisfy this requirement. However, hexalinear
maps require a maximum node degree of 6, and orthoradial metro
maps only allow a maximum node degree of 4. As larger node
degrees are common in real-world transit networks, this limitation
has to be addressed prior to rendering such maps.

We use the approach depicted in Figure 5. Given a maximum
node degree D, an input node v with deg(v) > D and incident edges
€1 . . €deg(v), We detach edges ep+1 . . . edeg(0) and add them to a
new non-station node v’, placed at the same position as v (note
that Figure 5 depicts v” with a different position than v’ for better
readability). An additional edge f is added between v’ and v with
L(f) = UeD+1---edeg(v) L(e). If we still have deg(v”) > D, we repeat
the process for v’.

3 CONSTRAINT RELAXATION

Even with prior node splitting, the greedy approximate approach
from [8] might not find a feasible solution, because the algorithm
might stall in a situation where an edge cannot be routed crossing-
free. To overcome this problem, we relax the constraints that image
paths must be crossing free and that edge orderings must be pre-
served. Instead of setting the weight of edges that would violate
these constraints to infinity, we introduce a weight wo, which is
set high enough so that any path through G using only compliant
edges is cheaper than we. This enables the subsequent local search
to overcome these topology violations. We also note that even if the
local search does not fix the violation, a formal topology violation
will not necessarily result in a final map drawing with perceived
incorrect topology. Figure 6 provides an example.

4 SPARSE GRID GRAPHS

In this section, we describe three techniques to reduce the number of
nodes and edges in the octilinear base grid graph: convex-hull grids
(Section 4.1), octilinear quadtree grids (Section 4.2), and octilinear
Hanan grids (Section 4.3). The first technique is relatively simple,
the latter two are adaptive and reflect input node densities.

4.1 Convex-Hull Grids

A simple technique to reduce the size of the base grid graph is to
crop the full grid to the padded convex hull of the input graph.
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Figure 6: With constraint relaxation, the line graph (1) re-
sults in a metro map image (2) which does not have vertex-
disjoint paths, violating topology constraints. By inserting
non-station nodes where paths cross, the final map (3) al-
lows for a line ordering on the overlapping segments which
preserves the input topology.

1)

Figure 7: A simple approach for reducing the base grid graph
size: instead of building the base grid graph from the padded
bounding box of G, we use the padded convex hull H.
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Figure 8: Left: an input graph G and the corresponding
quadtree. Each quadtree cell contains exactly one input
node. Right: an octilinear grid graph built from the quadtree,
with a metro map image of G.

Let S be the set of coordinates of the input line nodes V. We
extend each p = (x,y) € S by four additional coordinates: p; =
(x+ry),p2=(x-ry),ps=(x,y+r)and ps = (x,y — r), where
r is the padding. We then calculate the convex hull of the resulting
coordinate set S” and only keep grid nodes within that hull. Figure 7
gives an example.

4.2 Octilinear Quadtree Grids

A quadtree is a grid which can be constructed for a set S of input
points in the following way: start with the (padded) bounding box
of S as a grid with a single cell. For a given threshold value ¢, while
there is a cell that has more than ¢ points from S in it, split this cell
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Figure 9: Left: a bounding-box restricted octilinear Hanan
grid for an input graph G. The black nodes were part of the
input graph G and have been snapped to a base grid with cell
size d. Edges of G are depicted in red. Right: a metro map
image of G on O(G).

Figure 10: Hanan iterations for an octilinear Hanan grid on
3 input points S. After 4 iterations, the octilinear Hanan grid
is the full octilinear grid.

into 4 rectangular cells. The resulting grid has a tree-like structure,
where each grid cell of size [ may have 4 direct child vertices of
size [/2. To again maintain a minimum segment length in the final
drawing, we additionally add a minimum grid cell size d < I: ifa
cell contains more than 1 point, but a split would result in a cell
size | < d, we do not split.

The resulting grid (see Figure 8, left for an example) is rectilinear,
but can easily be transformed into a sparse octilinear grid graph by
adding two diagonal edges to leaf cells (Figure 8, right).

We construct the quadtree in the following way: the lower left
corner of the quadtree bounding box is aligned to the lower left
corner of the full grid bounding box. We then search for the smallest
i such that a bounding box B with side length 2’ - d contains the
entire full grid, and build the quadtree from this box. Additionally,
we require the quadtree cell size to be at least d. Then any cell
size is a multiple of d. This maintains comparability to the original
approach: the nodes in the quadtree grid are a subset of a full
octilinear grid with grid cell size d covering B.

4.3 Octilinear Hanan Grids

Given a set of two-dimensional points S, the Hanan grid H(S) is a
graph constructed as follows: (1) Draw vertical and horizontal lines
through each p € S. (2) Where these lines intersect, add vertices. A
Hanan grid H(S) contains a rectilinear minimum Steiner tree for S
[18]. As a rectilinear Steiner tree may be understood as a primitive
metro map, it seems worthwhile to evaluate their applicability to
grid-based metro map drawing.

Since rectilinear metro maps are of only little interest, we slightly
extend the definition of a classic Hanan grid and introduce the
concept of octilinear Hanan grids. Again given a point set S on the
plane, the construction of an octilinear Hanan grid O(S) is similar to
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a classic Hanan grid, but we also draw diagonal lines and consider
them for possible intersection points.

4.3.1 Base Grid Snapping. As we would like to maintain a mini-
mum segment length in the final maps, we do not construct the
octilinear Hanan grid directly on the input graph G, but first snap
the input node positions to a regular grid with cell size d. We de-
note this graph by G’. The base grid is restricted by the (padded)
bounding box of the input graph. We additionally restrict the extent
of O(S) to the boundaries of the original grid. See Figure 13 for an
example.

4.3.2  Hanan lterations. An octilinear Hanan grid O(S) with nodes
V can be made increasingly more fine-grained if we take the nodes
V as points S” and construct an octilinear Hanan grid O(S’) from
them. We call such a step a Hanan iteration. Figure 10 gives an
example.

4.4 Path Cost Preserving Edge Weights

For both the quadtree and the octilinear Hanan grid graph we
would like the costs of the image paths to be comparable to a full
octilinear grid graph. Consider such a full octilinear grid graph
I = (¥, Q) covering the entire bounding box of a sparse grid graph
S, built either using the quadtree approach, or the octilinear Hanan
grid approach. Because of the way we constructed S, the following
properties hold: (1) All paths in S will only consist of octilinear
segments. (2) The nodes of S are a subset of ¥. (3) Each path p
through S has a corresponding path in T

We additionally would like a path in S to have the same cost
as the corresponding path in I'. Observe that an edge e in S might
“simulate” n full grid edges w € Q. This might also be understood
as a virtual contraction of n — 1 grid nodes ¢ € ¥.If n = 1, we can
use the original edge weight w(w) directly. If n > 1, e contains n — 1
contracted nodes which are passed with a 180° bend. We therefore
use w(e) = (n—1) - c1g0 + X1, w(w;) as an edge weight, where
c180 is the cost of 180 degree bend edges.

5 GRIDS FOR ALTERNATIVE LAYOUTS

To render both hexalinear and orthoradial maps, we describe two
kinds of base grid graphs in this section: triangular grids (Sec-
tion 5.1) and pseudo orthoradial grids (Section 5.2).

5.1 Triangular Grids

A triangular grid partitions the plane into equilateral triangles.
At the intersection points, exactly 6 triangle sides meet at 60°
angles. If the intersection points are interpreted as nodes, and the
triangle sides as edges, any path on such a triangular grid graph is
hexalinear. See Figure 11 for an example of a triangular grid graph
and hexalinear paths through it.

In [8], we extended each grid node of an octilinear grid graph
by 8 port nodes and connected them via sink edges to the original
grid node, and via bend edges to each other (Figure 12.1). Bend
edge costs reflected the cost of a 45°, 90° or 135° bend at the grid
node. We designed them in such a way that shortcuts always had
higher or equal costs - for example, in Figure 12.1, the blue 45°
bend edge may be circumvented by first taking a 180° edge, and
then a 135° edge. Such shortcuts are still possible in triangular grid
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Figure 11: Left: A triangular grid graph covering the padded
bounding box of an input graph G. Right: A hexalinear im-
age of G on the triangular grid graph.

Figure 12: Extended grid node ¥y, , in an octilinear grid
graph (1), a triangular grid graph (2) and an orthoradial grid
graph (3). Paths may perform bends at {,, by using bend
edges, weighted by the respective bend penalty. In (1) and
(2), shortcuts may undermine the bend penalties.

033‘330
ey

Figure 13: Two kinds of orthoradial grid graphs, both with
(optional) center nodes (depicted in gray). d is the distance
between rings. Left: Orthoradial grid graph with b = 8. Right:
Pseudo orthoradial grid graph where b is doubled each time
the radius doubles.

graphs, see Figure 12.2 for an example. To avoid them, we use the
same technique as in [8]. For the grid edges, we used unit weights.

5.2 Orthoradial Grids

As mentioned above, recent work discussed the problem of drawing
metro maps in an orthoradial fashion [26, 27, 37] and it was ob-
served that an orthoradial may be interpreted as orthogonal maps
on a cylinder [27]. Figure 13, left depicts an orthoradial grid pro-
duced in this fashion from an ortholinear grid. For the distance
between rings (and for the radius of the inner ring) we use the cell
grid size parameter d. As the grid density decreases with greater
radius, an obvious esthetic problem are the large white-space areas.
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Table 1: Effects of sparse base grids on base graph size, given as number of nodes |¥| and number of edges |Q|. The first column
gives the abbreviated dataset name. Under ‘red. we give the average reduction when compared to the full grid.

Full Convex Hull Quadtree OHG-1 OHG-2

[¥] |Q| rows cols [¥] |Q| rows cols [¥| |Q] rows cols || |Q] rows cols |¥|  |Q] rows cols
F 3.7k 158k 0.IM 0.6M 1.8k 7.8k 46.5k 280.1k 1.2k 4.6k 31.6k 0.2M 1.7k 5k 43k 164.1k 3.7k 158k 0.1M 0.6M
v 5.5k 23.7k 0.1IM 09M 23k 9.8k 64.9k 04M 13k 4.5k 36.1k 0.2M 21k 6.2k 59.6k 232.1k 55k 23.7k 0.IM 0.9M
ST 12.2k 527k 0.7M 4.3M 7k 30.3k 388.3k 25M 2.8k 10.4k 160.8k 0.8M 6.2k 19.9k 346.4k 1.5M 122k 52.7k 0.7M 4.3M
B 10.5k 45.6k 0.5M 3.5M 59k 25.2k 304.1k 1.9M 2.1k 7.9k 1159k 0.6M 4.8k 15.1k 250.1k 1.IM  10.5k 45.6k 0.5M 3.5M
SD 149k 647k 0.6M 3.8M 9.4k 40.7k 370.4k 24M 23k 85k 97.6k 0.5M 5.7k 16.9k 228.4k 09M 149k 64.6k 0.6M 3.8M
red. 46%  47% 45% 46% 77%  80% 76% 80% 57%  69% 55% 71% 0% 0% 0% 0%

To overcome this problem, we use an altered orthoradial grid
graph, as depicted in Figure 13, right. The innermost ring starts
with anumber b = 8 of nodes. This number is doubled each time the
ring radius doubles. So at ring 1, b1 = 8, at ring 2, by = 16, by = 32,
bg = 64 and so on. This will give our maps a denser look while still
maintaining an orthoradial layout and guaranteeing a minimum
distance between nodes. We call this graph a pseudo orthoradial
grid graph. Note that the length of a segment between adjacent
nodes is always at least Z-d in this configuration, so a minimum
distance of d between adjacent nodes in the final drawing is not
guaranteed. To guarantee a minimum distance of d, the inner ring
radius would have to be set to %d. In practice, however, we found
the difference of the resulting maps to be marginal.

Also in [27] it was observed that real-world orthoradial metro
maps often feature a center node (Figure 13, gray). For our experi-
ments in Section 6.3 we also added such a center node to our pseudo
orthoradial grids. The center node was connected to 4 nodes on
the first ring in an ortholinear fashion to guarantee a consistent
maximum grid node degree of 4. The grid was always centered at
the input node of highest degree (see for example Figure 15, where
the grid center for Sydney is at the far right). The radius of the
pseudo orthoradial grid was chosen such that it completely covered
the padded bounding box of the input graph.

We chose grid edge weights which respect the length of the
corresponding segment. Edges which connect two rings always
have the same length and are weighted uniformly. Edges on circular
segments received a uniform base weight on the inner ring. On all
other rings, the weights were additionally multiplied by the ratio
between the circular segment length on the respective ring and the
circular segment length on the first ring.

6 EXPERIMENTAL EVALUATION

We implemented all grid types described above and tested them
on five datasets of increasing complexity: the tram network of
Freiburg, the subway network of Vienna, the light rail network of
Stuttgart, the subway network of Berlin, and the light rail network
of Sydney. We evaluated all grids using the ILP and the approximate
approach described in Section 1.3.2, both with and without density
penalty. The results can be found online.? For the sparse octilinear
base grids, we compared their dimensions to the original full oc-
tilinear grid in Section 6.1. Their effect on the speed and quality

Zhttps://octi.informatik.uni-freiburg.de/flexmaps
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of the schematization process will be measured in Section 6.2. In
Section 6.3 we will present results following non-octilinear base
grids. We consider the following as our main results:

(1) The sparse grids greatly reduce the base grid graph dimensions,
up to a factor of 5. If an ILP is used to find the optimal metro map,
the ILP dimensions are also greatly reduced.

(2) The convex hull grid and the octilinear Hanan grid have little
impact on optimality, while the quadtree base grid produces results
which are up to 53% worse.

(3) The base grid size reduction may speed up solution times, but
does not do so consistently. If an ILP is used, some maps are gen-
erated much faster, but others take up to 6 times longer. If our
approximate approach is used, the performance gains are slightly
better on average, but still not consistently so.

(4) Our approach can render orthoradial and hexalinear metro maps
in under 2.5 seconds for all datasets.

All experiments were performed on an AMD FX-8150 machine
with 8 cores and 32 GB of memory. The ILPs were optimized using
Gurobi 9.1.1 (we also experimented with GLPK and COIN-OR, but
found Gurobi to be superior). The base grid size was set to the
average distance between adjacent stations in the input graph and
the degree 2 heuristic was employed.

6.1 Sparse Grid Graph Dimensions

Table 1 gives the effects of our sparse base grids Convex Hull,
Quadtree, Octilinear Hanan Grid with 1 iteration (OHG-1) and
Octilinear Hanan Grid with 2 iterations (OHG-2) on the dimensions
of the base grid graph and the corresponding ILP.

In general, all sparse grids greatly reduced these dimensions.
For the relatively simple Convex Hull approach, the number of
nodes decreased by 46% on average, and the number of edges by
47%. The quadtree based grid even reduced the number of edges
by 80% on average, while OHG-1 produced base graphs with 69%
fewer edges than the full grid graph. The ILP sizes directly reflected
this reduction. An octilinear Hanan grid with 2 iterations (OHG-2)
already resulted in a nearly full grid for all test datasets. The size
reductions were therefore negligible.

6.2 Performance of Sparse Grid Graphs

To measure the effect of the sparse grids on the quality of the ILP
based solutions, we first determined the optimal target values on
the full grid and then measured the approximation error introduced
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Table 2: Effects of sparse base grids on ILP optimality. ©*
is the optimal target value using a full grid, © is the target
value for the respective simplified grid, § = ©/0* — 1 is the
approximation error.

Conv. Hull Quadtree OHG-1 OHG-2

oF (S] S (S] S (C] S (S] 1)

F 1159 116.8 0.8% 122.1  5.3% 117.8 1.6% 1159 0%
VvV 127.6 1285 0.7% 144.7 13.4% 128.1 0.4% 127.6 0%
ST 305.8 307.1  0.4% 3343 93% 312.6 2.2% 310.7 1.6%
B 2342 237.0 1.2% 2684 14.6% 2403 2.6% 234.2 0%
SD 2914 291.4 0% 306.2 5.1% 295.0 1.2% 2914 0%
avg. 0.6% 9.5% 1.6% 0.5%

by the sparse grids. The quality loss was small (< 2% on average)
for all sparse grids except the Quadtree grid (Table 2). For our
approximate approach, we compared the target values of all sparse
grids with the target value of the approximate approach on the
full grid (not the optimal target value found by our ILP). We also
evaluated two variants of our approximate approach: the standard
version which optimizes the same target function as the ILP, and
the standard version with the additional density penalty described
in Section 1.3.2. Additionally, we counted the number of topology
violations introduced by our approximate approach due to the
constraint relaxation described in Section 3. Only a single topology
violation was introduced on the Quadtree grid for the Berlin dataset
without the density penalty.

Using the standard version, the Convex Hull approach yielded
slightly better results than the baseline, most likely because the
cropped areas contained local optima. The error introduced by
the other sparse grid types was comparable to the ILP approach
(Table 3).

With the additional density penalty, the quality of the Quadtree
approach greatly deteriorated (with an approximation error of up
to 53.2%). The approximation error of the Convex Hull and OHG-1
approach also increased, but not as drastically (Table 4).

The effect of our sparse base grids on the solution times remained
below our expectations. While the Convex Hull and OHG-1 grids
were able to speed up the ILP solution time for the Freiburg, Vienna
and Sydney datasets (by up to 84%), the solution times for the
Stuttgart and Berlin dataset were often several times longer (Table 5).
A similar effect was measured for our approximate approach, both
with and without the density penalty (Tables 6 and 7).

For the approximate approach, we suspect several reasons for
this: (1) The sparse grid graphs take longer to construct than a
simple full grid. This is especially noticeable if we use multiple
Hanan iterations, as is reflected in the increased running time for
the OHG-2 approach in Table 6. (2) Simple look-ups like neigh-
boring grid nodes are easy in a full grid graph, but not so on
quadtree grids or octilinear Hanan grids. (3) Aspects of locality
may slow down the shortest path calculations on the quadtree
grid and the octilinear Hanan grid. In a full grid, we add grid
nodes from left to right, which already leads to neighboring grid
nodes being close together in memory. For both OHG variants and
the quadtree grid, the memory layout is much more irregular. (4)
More generally, a sparse base grid makes it more difficult to find a
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first feasible solution. This is especially true for input graphs with
high node densities, which is reflected by the increased solution
times for Stuttgart and Berlin. As mentioned above, if our approxi-
mate approach stalls with the initial routing ordering of the input
edges, it tries random edge orderings until a feasible solution is
found.

For the ILP, we also suspect (4) to be the main reason for the
increased solution times. It may also be that the irregularity of the
sparse grids might compromise some heuristics of the ILP solver.

We note that there is practical value in sparse base grids apart
from faster solution times: as the sparse base grids produce much
smaller ILPs, they require less memory to solve. For example, to
optimize the ILP of the Sydney dataset, we required 28.9 GB of
memory using a full octilinear grid, and only 8.3 GB using an
octilinear Hanan grid.

6.3 Hexalinear and Orthoradial Experiments

We evaluated all our testing datasets on a triangular base grid,
producing hexalinear maps, and on a pseudo orthoradial base grid.
Figure 14 shows the hexalinear results of our approximate approach
with density penalty for Berlin, Vienna, and Sydney, as rendered
by LOOM [7], with a simple a-posteriori labeling which was not
part of the approach described in this work. Figure 15 shows the
orthoradial results using the same setup. The solution times as
well as the approximation errors introduced by our approximate
approach can be found in Table 8. We were able to render all maps
in under 2.5 seconds, with zero topology violations for all datasets
except Berlin, where a single violation was introduced in the ortho-
radial map (highlighted in red in Figure 15). The slower solution
times when compared to octilinear maps can partly be explained by
the lower maximum node degree of the grid graphs, which makes
it harder to find feasible solutions. We also used a carefully de-
signed A* heuristic to speed up the shortest-path computations in
the octilinear setting, but not on the hexalinear or pseudo ortho-
radial grid. The schematized maps for all datasets can be found
online.?

7 CONCLUSION AND FUTURE WORK

We have extended an earlier approach of drawing metro maps
as images on regular octilinear grid graphs by considering other
grid graphs and making them more sparse. We experimented with
octilinear base grids cropped to the convex hull of the input graph,
octilinear base grids constructed in a quadtree fashion, octilinear
Hanan grids, pseudo orthoradial grids, and triangular grids.

These sparse octilinear base grids were able to greatly reduce the
problem size with only minimal impact on the solution optimality
for the convex hull and the octilinear Hanan grid approach. This
problem size reduction did not always result in the expected perfor-
mance gains. We discussed possible reasons for this in Section 6.2.

Using pseudo orthoradial and triangular grids, we were able to
render esthetically pleasing orthoradial and hexalinear drawings
of our test datasets in under 2.5 seconds. We see further speed-up
potential by combining the shortest-path computations with an A*
heuristic.

3https://octi.informatik.uni-freiburg.de/flexmaps
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Table 3: Effects of sparse base grids on the optimality of our approximate approach. § gives the approximation error compared
to the approximate approach on the full grid. A negative 6 means the result was better than the result on the full grid. Under
’vio! we give the number of topology violations introduced by our approximate approach due to constraint relaxation.

Full Conv. Hull Quadtree OHG-1 OHG-2

(€] vio. (€] vio. 1) (€] vio. S (€] vio. ) (€] vio. 1)

F 117.0 0 117.9 0 0.7% 125.5 0 7.3% 120.2 0 2.8% 117.0 0 0%
\% 128.6 0 129.6 0 0.8% 153.6 0 19.5% 132.1 1] 2.7% 128.6 0 0%
ST 328.4 0 328.7 0 0.1% 364.7 0 11.1% 338.3 0 3.1% 330.1 0 0.5%
B 258.5 0 257.9 0 -0.2% > Weo 1 - 260.2 0 0.6% 256.3 0 -0.8%
SD 318.0 0 298.6 0 -6.1% 316.0 0 0.6% 314.9 0 0.9% 318.0 0 0%
avg. -0.9% 9.3% 1.6% 0%

Table 4: Effects of sparse base grids on the optimality of our approximate approach with additional density penalty.

Full Conv. Hull Quadtree OHG-1 OHG-2

e vio. e vio. S e vio. S e vio. 1) e vio. S

F 144.8 0 158.5 0 9.5% 183.3 0 26.7% 160.6 0 10.9% 144.8 0 0%
\' 174.5 0 177.8 0 1.8% 267.4 0 53.2% 206.1 0 18.1% 168.7 0 -3.3%
ST 401.2 0 405.8 0 1.1% 557.3 0 38.9% 422.9 0 5.4% 401.4 0 -0.1%
B 3144 0 318.5 0 1.3% 456.2 0 45.1% 333.3 0 6.1% 311.5 0 0%
SD 385.7 0 387.7 0 0.5% 540.8 0 40.2% 387.3 0 0.4% 385.7 0 0%
avg. 2.9% 39.7% 8.1% -0.1%

Table 5: Effects of sparse base grids on ILP solution times.

Under ‘red’ we give the reduction when compared to the
original solution time on the full grid in percent.

Table 7: Effects of sparse base grids on solution times of
our approximate approach with additional density penalty,
when compared to the full grid.

Full Conv. Hull Quadtree OHG-1 OHG-2 Full  Conv. Hull Quadtree OHG-1 OHG-2

t t  red. t  red. t  red. t red. t t  red t red. t  red t red.
F 3m 2m  35% Im 63% 1.3m 57% 3m -1% F 116ms 102ms 12% 146ms -26% 85ms 26% 131ms -13%
V 13h 54m 33% 18m  77% 18m  77% 1.8h -37% V  244ms 105ms 57% 427ms -75% 147ms 40% 307ms -26%
ST 46m 3.2h -312% 4.5h -480% 1h  -29% 1h -30% ST 440ms 395ms 10% 542ms -23% 676ms -54% 552ms -25%
B 2h 14.5h -637% 5.2h -161% 19.2h -870% 2.6h -36% B  30Ims 302ms -0.4% 931ms -209% 457ms -51% 510ms -66%
SD 3.5h 2.3h 35% 1h 72% 34m 84% 2.6h 21% SD 340ms 362ms -7% 349ms -2% 432ms -27% 409ms -20%
avg. 1.5h 3.7h -169% 2.2h  -66% 4.2h -136% 1.7h -16% avg. 288ms 253ms 14% 479ms -32% 360ms -13% 382ms -31%

Table 6: Effects of sparse base grids on solution times of our
approximate approach, when compared to the full grid.

Full  Conv. Hull Quadtree OHG-1 OHG-2

t t  red t red. t  red. t red.
F 56ms 39ms 30% 56ms -1% 62ms -11% 63ms -13%
\% 78ms 53ms 32% 313ms -301% 61lms 21% 107ms -37%
ST 266ms 115ms 57% 386ms -45% 176ms 34% 330ms -24%
B 158ms 213ms -34% 723ms -356% 205ms -30% 375ms -137%
SD 215ms 323ms -50% 239ms -11% 148ms 31% 256ms -19%
avg. 155ms 149ms 7% 344ms -90% 130ms 9% 226ms -46%

We are also convinced that octilinear Hanan grids should be

further studied in the context of octilinear metro maps. For example,

it would be interesting to evaluate their application to restrict the
search space of other approaches.
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Table 8: Solution times using an ILP, our approximate ap-
proach (A), and our approximate approach with density
penalty (A+D) on hexalinear and pseudo orthoradial grids.

Hexalinear Grid

Pseudo Orthoradial Grid

ILP A S5 A+D ILP A S5 A+D
F 38m 138ms 7.1% 313ms 50s  234ms 17.5% 283ms
\% 6.5m 146ms 1.2% 654ms 18.2m 145ms 7.6% 351ms
ST 43.6m 616ms 153% 1.3s 28.7m 706ms 14.8% 1.9s
B 1.8h 470ms 17.3% 14s 84h 24s 17.8% 2.5s
SD  235m 1.6s 85% 2.2s 23.2m 468ms 6.0% 1.7s
avg. 0.6h  594ms 9.9% 1.2s 1.9h 791ms 12.7% 1.3s
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’

Figure 14: Hexalinear drawings of the Berlin, Vienna, and the Sydney network. Produced by our approximate approach with
density penalty.

Figure 15: Orthoradial drawings of the Berlin, Vienna, and the Sydney network. Produced by our approximate approach with
density penalty. For Berlin, a single topology violation was introduced, highlighted in red.
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