staty: Quality Assurance for Public Transit Stations in OpenStreetMap

Hannah Bast, Patrick Brosi and Markus Näther

University of Freiburg

ACM SIGSPATIAL 2020 - Seattle, Washington, USA

Mainly due to human error (outdated data, typos, ...)

- · Mainly due to human error (outdated data, typos, ...)
- Correct station data is necessary e.g. for route planning, station search, transit graph drawing, ...

- 1. Detect errors and inconsistencies in
 - station naming

1. Detect errors and inconsistencies in

- station naming
- station grouping

1. Detect errors and inconsistencies in

- station naming
- station grouping

- 1. Detect errors and inconsistencies in
 - station naming
 - station grouping
- 2. Provide mappers with
 - tool to find and analyze naming errors

1. Detect errors and inconsistencies in

- station naming
- station grouping

2. Provide mappers with

- tool to find and analyze naming errors
- suggestions how to (re-) group stations

Simplified station hierarchy model

lvl	tag	value
2	<pre>public_transport</pre>	stop_area_group
1	<pre>public_transport</pre>	stop_area
0	public_transport	stop_position, platform,stop, halt,station
	highway	bus_stop, platform
	railway	halt, tram_stop stop, platform
	tram	stop, platform
	subway	stop, platform

Station identifiers

Abstraction: station identifiers are tuples s = (n, p), where n is a station label, and p is a station position.

Station identifiers

Abstraction: station identifiers are tuples s = (n, p), where n is a station label, and p is a station position.

Multiple labels (name, alt_name, ref_name) yield multiple station identifiers.

Station identifiers

Abstraction: station identifiers are tuples s = (n, p), where n is a station label, and p is a station position.

Multiple labels (name, alt_name, ref_name) yield multiple station identifiers.

Station similarity classification

Goal: given two station identifiers s_1 and s_2 , decide whether they describe the same station.

Station similarity classification

Goal: given two station identifiers s_1 and s_2 , decide whether they describe the same station.

We tried a lot and ultimately trained a random forest classifier on common 3-grams, meter distance and the station position on multiple offsetted grids (to capture regional label characteristics).

Station similarity classification

Goal: given two station identifiers s_1 and s_2 , decide whether they describe the same station.

We tried a lot and ultimately trained a random forest classifier on common 3-grams, meter distance and the station position on multiple offsetted grids (to capture regional label characteristics).

F1 score on an international dataset for Germany, Austria and Switzerland: > 0.99.

(a) Filter station objects from OSM

- (a) Filter station objects from OSM
- (b) Extract station identifiers with initial clustering

- (a) Filter station objects from OSM
- (b) Extract station identifiers with initial clustering
- (c) Pairwise similarity classification within threshold distance

- (a) Filter station objects from OSM
- (b) Extract station identifiers with initial clustering
- (c) Pairwise similarity classification within threshold distance
- (d) Re-cluster based on similarity

- (a) Filter station objects from OSM
- (b) Extract station identifiers with initial clustering
- (c) Pairwise similarity classification within threshold distance
- (d) Re-cluster based on similarity
- (e) Derive errors and suggestions

 Search and browse OSM station data for large parts of Europe and North America

- Search and browse OSM station data for large parts of Europe and North America
- Station name errors and suggestions are highlighted

- Search and browse OSM station data for large parts of Europe and North America
- Station name errors and suggestions are highlighted
- Grouping suggestions and correct groups are shown

- Search and browse OSM station data for large parts of Europe and North America
- Station name errors and suggestions are highlighted
- Grouping suggestions and correct groups are shown
- https://staty.cs.uni-freiburg.de

Thank you!

https://staty.cs.uni-freiburg.de