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1  Introduction

KB+Text search combines structured search in a knowledge 
base (KB) with traditional full-text search.

In traditional full-text search, the data consists of text 
documents. The user types a (typically short) list of key-
words and gets a list of documents containing some or all 
of these keywords, hopefully ranked by some notion of rel-
evance to the query. For example, typing broccoli leaves 
edible in a web search engine will return lots of web pages 
with evidence that broccoli leaves are indeed edible.

In KB search, the data is a knowledge base, typically 
given as a (large) set of subject-predicate-object triples. For 
example, Broccoli is-a plant or Broccoli native-to Europe. 
These triples can be thought of to form a graph of enti-
ties (the nodes) and relations (the edges), and a language 
like SPARQL allows to search for subgraphs matching a 
given pattern. For example, find all plants that are native 
to Europe.

The motivation behind KB+Text search is that many que-
ries of a more “semantic” nature require the combination of 
both approaches. For example, consider the query plants 
with edible leaves and native to Europe, which will be our 
running example in this paper. A satisfactory answer for this 
query requires the combination of two kinds of information:

1.	 A list of plants native to Europe; this is hard for full-text 
search but a showcase for knowledge base search.

2.	 For each plant the information whether its leaves are 
edible or not; this is easily found with a full-text search 
for each plant, but quite unlikely to be contained in a 
knowledge base.

In a previous work [1], we have developed a system with 
a convenient user interface to construct such queries 
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incrementally, with suggestions for expanding the query 
after each keystroke. We named the system Broccoli, after a 
variant of the example query above, which was our very first 
test query. Figure 1 shows a screenshot of Broccoli in action 
for this example query.

1.1 � Our Contribution

The main contribution of this paper is a quality evaluation of 
KB+Text search on three benchmarks, including a detailed 
error analysis; see Sect. 4. On the side, we recapitulate the 
basics of KB+Text search (Sect. 2) and we provide a brief 
but fairly broad overview of existing quality evaluations for 
related kinds of “semantic search” (Sect. 3).

2 � The Components of KB+Text Search

We briefly describe the main components of a system for 
KB+Text search, as far as required for understanding the 
remainder of this paper. KB+Text search operates on two 

kinds of inputs, a knowledge base and a text collection. The 
knowledge base consists of entities and their relations in the 
form of triples. The text collection consists of documents 
containing plain text. This input is pre-processed, indexed, 
and then queried as follows.

2.1 � Entity Recognition

In a first step, mentions of entities from the given knowl-
edge base are recognized in the text. Consider the following 
sentence:

(S) The usable parts of rhubarb are the medicinally used 
roots and the edible stalks, however its leaves are toxic.

Assuming the provided knowledge base contains the 
entity Rhubarb, the words rhubarb and its are references to 
it. When we index the English Wikipedia and use YAGO as 
a knowledge base, we make use of the fact that first occur-
rences of entities in Wikipedia documents are linked to their 
Wikipedia page that identifies a YAGO entity. Whenever 
a part or the full name of that entity is mentioned again in 
the same section of the document (for example, Einstein 

Words 

Cabbage (34) 
Broccoli (58) 

Lettuce (23) 

Instances: 

1 - 3 of 421 

House plant (17) 
Garden plant (24) 

Crop (16) 

Classes: 

1 - 3 of 28 
  Broccoli 

Ontology: Broccoli 
Broccoli: is a plant; native to Europe. 

Document: Edible plant stems 
The edible portions of Broccoli are the stem tissue, the flower buds, as 
well as the leaves. 
 

Cabbage 
Ontology: Cabbage 
Cabbage: is a plant; native to Europe. 
 Document: Cabbage 
The only part of the plant that is normally eaten is the leafy head. 

Your Query: 
Plant 

occurs-with edible leaves 

native-to 

Hits: 1 - 2 of 421 

Europe 

   
occurs-with  <Anything> 

Relations: 

1 - 3 of 7 

cultivated-in  <Location> 
belongs-to   <Plant family> 

(67) 
(58) 

 type here to extend your query … 

Fig. 1   A screenshot of Broccoli, showing the final result for our 
example query. The box on the top right visualizes the current 
KB+Text query as a tree. The large box below shows the matching 
instances (of the class from the root node, plant in this case). For each 
instance, evidence is provided for each part of the query. In the panel 
on the left, instances are entities from the knowledge base, classes are 
groups of entities with the same object according to the is-a predi-
cate, and relations are predicates. The instances are ranked by the 
number of pieces of evidence (only a selection of which are shown). 
With the search field on the top left, the query can be extended fur-

ther. Each of the four boxes below the search field provide context-
sensitive suggestions that depend on the current focus in the query. 
For the example query: suggestions for subclasses of plants, sugges-
tions for instances of plants that lead to a hit, suggestions for rela-
tions to further refine the query. Word suggestions are displayed as 
soon as the user types a prefix of sufficient length. These suggestions 
together with the details from the hits box allow the user to incre-
mentally construct adequate queries without prior knowledge of the 
knowledge base or of the full text
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referring to Albert Einstein), we recognize it as that entity. 
We resolve references (anaphora) by assigning each occur-
rence of he, she, it, her, his, etc. to the last recognized entity 
of matching gender. For text without Wikipedia annotations, 
state-of-the art approaches for named entity recognition and 
disambiguation, such as Wikify! [2], can be used instead.

2.2 � Text Segmentation

The special occurs-with relation searches for co-occurrences 
of words and entities as specified by the respective arc in the 
query; see Fig. 1 and Sect. 2.4 below. We identify segments 
in the input text to which co-occurrence should be restricted. 
Identifying the ideal scope of these segments is non-trivial 
and we experiment with three settings: (1) complete sec-
tions, (2) sentences and (3) contexts, which are parts of sen-
tences that “belong together” semantically. The contexts for 
our example sentence (S) from above are:

(C1) The usable parts of rhubarb are the medicinally used 
roots
(C2) The usable parts of rhubarb are the edible stalks
(C3) however rhubarb leaves are toxic

Note that, because entities and references (underlined words) 
have been identified beforehand, no information is lost. The 
rationale behind contexts is to make the search more precise 
and “semantic”. For example, we would not want Rhubarb 
to be returned for a query for plants with edible leaves, since 
its leaves are actually toxic. Nevertheless Rhubarb, edible, 
and leaves co-occur in sentence (S) above. However, they do 
not co-occur in either of (C1), (C2), (C3). To compute con-
texts, we follow an approach for Open Information Extrac-
tion (OIE) described in [3].

2.3 � Indexing

An efficient index for KB+Text search is described in [4]. 
This index provides exactly the support needed for the sys-
tem shown in Fig. 1: efficient processing of tree-shaped 
KB+Text queries (without variables for relations), efficient 
excerpt generation, and efficient search-as-you-type sug-
gestions that enable a fully interactive incremental query 
construction.

2.4 � Query Language

KB+Text extends ordinary KB search by the special occurs-
with predicate. This predicate can be used to specify co-
occurrence of a class (e.g., plant) or instance (e.g., Broc-
coli) with an arbitrary combination of words, instances, 
and further sub-queries. When processing the query, this 

co-occurrence is restricted to the segments identified in the 
pre-processing step described in Sect. 2.2 above.

A user interface, like the one shown in Fig. 1, guides 
the user in incrementally constructing queries from this lan-
guage. In particular, a visual tree-like representation of the 
current query is provided after each keystroke, along with 
hits for that query and suggestions for further extensions or 
refinements.

3 � Related Work

The literature on semantic search technologies is vast, 
and “semantic” means many different things to different 
researchers. A variety of different and hard-to-compare 
benchmarks have therefore emerged, as well as various 
stand-alone evaluations of systems that perform KB+Text 
or variants of it.

We briefly discuss the major benchmarks from the past 
decade, as well as the relatively few systems that explicitly 
combine full-text search and knowledge base search. A com-
prehensive survey of the broad field of semantic search on 
text and/or knowledge bases is provided in [5].

3.1 � TREC Entity Tracks

The goal of the TREC Entity Tracks were queries search-
ing for lists of entities, just like in our KB+Text search. 
They are particularly interested in lists of entities that are 
related to a given entity in a specific way. Thus, the task is 
called “related entity finding”. A typical query is airlines 
that currently use boeing 747 planes. Along with the query, 
the central entity (boeing 747) as well as the the type of the 
desired target entities (airlines) were given.

For the 2009 Entity Track [6], the underlying data was 
the ClueWeb09 category B collection. ClueWeb091 is a 
web corpus consisting of 1 billion web pages, of which 
500 million are in English. The category B collection is 
a sub-collection of 50 million of the English pages. Runs 
with automatic and manual query construction were evalu-
ated. This task turned out to be very hard, and the overall 
best system achieved an NDCG@R of 31% and a P@10 
of only 24%—albeit with automatic query construction. 
When restricting the results to entities from Wikipedia, the 
best system achieved an NDCG@R of 22% and a P@10 of 
45% [7]. We use the queries from this track as one of our 
benchmarks in Sect. 4 (for later tracks no Wikipedia based 
groundtruth is available).

For the 2010 Entity Track [8], the full English portion 
of the ClueWeb09 dataset was used (500 million pages). 

1  http://lemurproject.org/clueweb09/.

http://lemurproject.org/clueweb09/
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The task remained hard, with the best system achieving 
an NDCG@R of 37% and an R-Precision (P@10 was not 
reported that year) of 32% even for manually tuned queries 
(and 30% for automatic runs).

In 2010, an additional task was added, Entity List Com-
pletion (a similar task but with an additional set of example 
result entities given for each query) with BTC 2009 as the 
underlying dataset.2 This is a dataset consisting of 1.14 bil-
lion triples crawled from the semantic web. The BTC dataset 
contains the complete DBpedia [9]. It turned out that the 
best performing approaches all boost triples from DBpe-
dia to obtain good results. Still, working with the dataset 
turned out to be difficult, with the best systems achieving an 
R-Precision of 31% (NDCG@R was not reported).

In the 2011 track [10], another semantic web dataset was 
used (Sindice [11]). However, the number of participating 
teams was very low, and results were disappointing com-
pared to previous years.

3.2 � SemSearch Challenges

The task in the SemSearch challenges is also referred to 
as ad-hoc object retrieval [12]. The user inputs free-form 
keyword queries, e.g. Apollo astronauts who walked on the 
moon or movies starring Joe Frazier. Results are ranked 
lists of entities. The benchmarks were run on BTC 2009 as 
a dataset.

In the 2010 challenge [12], there were 92 queries, each 
searching only for a single entity. The best system achieved 
a P@10 of 49% and a MAP of 19%.

In the 2011 challenge [13], there were 50 queries. The 
best system achieved a P@10 of 35% and a MAP of 28%. 
The 2011 queries are one of our benchmarks in Sect. 4.

3.3 � The INEX Series

Initiative for the Evaluation of XML Retrieval (INEX) has 
featured many search tasks. While the focus is on XML 
retrieval, two tracks are remarkably similar to the bench-
marks discussed before.

The Entity Ranking Track (from 2007 to 2009) and 
the Linked-Data Track (2012 and 2013) work on the text 
from Wikipedia and use intra-Wikipedia links to establish 
a connection between entities and an ontology or an entire 
knowledge base (since 2012, entities are linked to their rep-
resentation in DBpedia). Queries are very similar to those of 
the TREC Entity Track from above: given a keyword query 
(describing a topic) and a category, find entities from that 
category relevant for that topic. However, few participants 

actually made use of linked data in their approaches and the 
results were inconclusive.

3.4 � Question Answering

Question answering (QA) systems provide a functionality 
similar to KB+Text. The crucial difference is that questions 
can be asked in natural language (NL), which makes the 
answering part much harder. Indeed, the hardest part for 
most queries in the QA benchmarks is to “translate” the 
given NL query into a query that can be fed to the underly-
ing search engine.

In the TREC QA tracks, which ran from 1999 to 2007, 
the underlying data were corpora of text documents. An 
overview of this long series of tracks is given in [14]. The 
corpora were mainly newswire documents, later also blog 
documents. The series started with relatively simple fac-
toid questions, e.g. Name a film in which Jude Law acted, 
and ended with very complex queries based on sequences 
of related queries, including, e.g., temporal dependencies. 
For list questions, such as Who are 6 actors who have played 
Tevye in ‘Fiddler on the Roof’?, which are similar to the kind 
we consider in this paper, the best system in 2007 achieved 
an F-measure of 48%.

In the Question Answering over Linked Data (QALD) 
series of benchmarks [15], the underlying data is again a 
large set of fact triples. The task is to generate the correct 
SPARQL query from a given NL question of varying diffi-
culty, e.g. Give me all female Russian astronauts [16]. This 
is very different from the other benchmarks described above, 
where a perfect query (SPARQL or keyword) typically does 
not exist.

The various tracks used different sets of facts triples from 
DBpedia and MusicBrainz (facts about music). In the last 
two runs, QALD-4 [17] and QALD-5 [18], the best system 
achieved an an F-measure of 72 and 63%, respectively.

3.5 � Systems for KB+Text and Similar Paradigms

Systems for a combined search in text documents and knowl-
edge bases were previously proposed in [19] (ESTER), [20] 
(Hybrid Search), [21] (Mímir), [22] (Semplore), and [23] 
(Concept Search). None of these systems consider semantic 
context as described in Sect. 2.2. For all these systems, only 
a very limited quality evaluation has been provided.

Hybrid Search is evaluated on a very specialized corpus 
(18K corporate reports on jet engines by Rolls Royce). For 
Concept Search, a similarly small dataset of 29K documents 
constructed from the DMoz web directory.

For ESTER, only two simple classes of queries are evalu-
ated: people associated with <university> and list of coun-
ties in <US state>. A precision of 37 and 67%, respectively, 
is reported for each class.

2  BTC billion triple challenge, https://km.aifb.kit.edu/projects/btc-
2009/.

https://km.aifb.kit.edu/projects/btc-2009/
https://km.aifb.kit.edu/projects/btc-2009/
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Semplore is evaluated on a combination of DBpedia 
(facts from Wikipedia) and LUBM (an ontology for the 
university domain). A P@10 of more than 80% is reported 
for 20 manually constructed queries. For many of those, the 
text part is simply keyword search in entity names, e.g., all 
awards containing the keywords nobel prize. Those queries 
then trivially have perfect precision and recall. We have only 
a single such query in our whole quality evaluation, all other 
queries combine knowledge base and full-text search in a 
non-trivial manner.

Mímir is only evaluated with respect to query response 
times and in a user study where users were asked to perform 
four search tasks. For these tasks, success and user satisfac-
tion with the system were tracked.

4 � Evaluation

4.1 � Input Data

The text part of our data is all documents in the English 
Wikipedia, obtained via download.wikimedia.org in Janu-
ary 2013.3 Some dimensions of this collection: 40 GB XML 
dump, 2.4 billion word occurrences (1.6 billion without 
stop-words), 285 million recognized entity occurrences and 
200 million sentences which we decompose into 418 mil-
lion contexts.

As knowledge base we used YAGO from October 2009.4 
We manually fixed 92 obvious mistakes in the KB (for exam-
ple, the nobel prize was a laureate and hence a person), and 
added the relation Plant native-in Location for demonstra-
tion purposes. Altogether our variant of YAGO contains 
2.6 million entities, 19,124 classes, 60 relations, and 26.6 
million facts.

We build a joint index over this full text and this KB, as 
described in [4]. As described there, the resulting index file 
has a size of 14 GB with query times typically well below 
100 ms [4, Table 1].

4.2 � Query Benchmarks

We evaluated the quality of our KB+Text search on the data-
set just described on three query benchmarks. Each bench-
mark consists of a set of queries, and for each query the set 
of relevant entities for that query from the knowledge base 

(YAGO in our case). Two of these query benchmarks are 
from past entity search competitions, described in Sect. 3: 
the Yahoo SemSearch 2011 List Search Track [24] and the 
TREC 2009 Entity Track [6]. The third query benchmark is 
based on a random selection of ten Wikipedia featured List 
of ... pages, similarly as in [19].

To allow reproducibility, we provide queries and rele-
vance judgments as well as the possibility to evaluate (and 
modify) the queries against a live running system for the 
SemSearch List Track and the Wikipedia lists under the link 
provided in the abstract. The TREC Entity Track queries 
were used for an in-depth quality evaluation that does not 
allow for an easy reproduction. Therefore we do not provide 
them in our reproducibility web application.

The SemSearch 2011 List Search Track consists of 50 
queries asking for lists of entities in natural language, e.g. 
Apollo astronauts who walked on the Moon. The publicly 
available results were created by pooling the results of par-
ticipating systems and are partly incomplete. Furthermore, 
the task used a subset of the BTC dataset (see Sect. 3), and 
some of the results referenced the same entity several times, 
e.g., once in DBpedia and once in OpenCyc. Therefore, we 
manually created a new ground truth consisting only of 
Wikipedia entities (compatible with our dataset). This was 
possible because most topics were inspired by Wikipedia 
lists and can be answered completely by manual investiga-
tion. Three of the topics did not contain any result entities in 
Wikipedia, and we ignored one additional topic because it 
was too controversial to answer with certainty (books of the 
Jewish canon). This leaves us with 46 topics and a total of 
384 corresponding entities in our ground truth. The original 
relevance judgments only had 42 topics with primary results 
and 454 corresponding entities, including many duplicates.

The TREC 2009 Entity Track worked with the 
ClueWeb09 collection and consisted of 20 topics also ask-
ing for lists of entities in natural language, e.g. Airlines that 
currently use Boeing 747 planes, but in addition provided 
the source entity (Boeing 747) and the type of the target 
entity (organization). We removed all relevance judgments 
for pages that were not contained in the English Wikipedia; 
this approach was taken before in [7] as well. This leaves us 
with 15 topics and a total of 140 corresponding relevance 
judgments.

As a third benchmark we took a random selection of ten 
of Wikipedia’s over 2400 en.wikipedia.org/wiki/List_of_... 
pages.5 For example, List of participating nations at the 
Winter Olympic Games. These lists are manually created by 
humans, but actually they are answers to semantic queries. 
The lists also tend to be fairly complete, since they undergo 
a review process in the Wikipedia community. This makes 

3  The choice of this outdated version has no significant impact on the 
insights from our evaluation: the corresponding Wikipedia data from 
2017 is (only) about 50% larger but otherwise has the same character-
istics and would not lead to principally different results.
4  There is a more recent version, called YAGO2, but most of the 
additions from YAGO to YAGO2 (spatial and temporal information) 
are not interesting for our search. 5  http://en.wikipedia.org/wiki/Wikipedia:Featured_lists.

http://en.wikipedia.org/wiki/Wikipedia:Featured%5flists
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them perfectly suited for a quality evaluation of our system. 
For the ground truth, we automatically extracted the list of 
entities from the Wikipedia list pages. This leaves us with 
ten topics and a total of 2367 corresponding entities in our 
ground truth.

For all of these tasks we manually generated KB+Text 
queries corresponding to the intended semantics of the origi-
nal queries. We relied on the interactive query suggestions 
of the user interface, but did not fine-tune queries towards 
the results. We want to stress that our goal is not a direct 
comparison to systems that participated in the tasks above. 
For that, input, collection and relevance judgments would 
have to be perfectly identical. Instead, we want to evaluate 
whether KB+Text can provide high quality results for these 
tasks.

4.3 � Quality Measures

Table 1 displays set-related and ranking-related measures. 
Our set-related measures include the numbers of false-posi-
tives (#FP) and false-negatives (#FN). We calculate the pre-
cision (Prec.) as the percentage of retrieved relevant entities 
among all retrieved entities and the recall as the percentage 
of retrieved relevant entities among all relevant entities. We 
calculate the F-measure (F1) as the harmonic mean of preci-
sion and recall.

For our ranking-related measures, we ordered entities by 
the number of matching segments. Let P@k be the percent-
age of relevant documents among the top-k entities returned 
for a query. R-precision is then defined as P@R, where R is 
the total number of relevant entities for the query. The aver-
age precision (AP) is the average over all P@i, where i are 
the positions of all relevant entities in the result list. For rel-
evant entities that were not returned, a precision with value 
0 is used for inclusion in the average. The mean average 

precision (MAP) is then simply the average AP over all que-
ries. We calculate the discounted cumulative gain (DCG) as:

where rel(i) is the relevance of the entity at position i in the 
result list. Usually, the measure supports different levels of 
relevance, but we only distinguish 1 and 0 in our bench-
marks. The nDCG is the DCG normalized by the score 
for a perfect DCG. Thus, we divide the actual DCG by the 
maximum possible DCG for which we can simply take all 
rel(i) = 1.

4.4 � Quality Results

Table 1 evaluates our quality measures for all three bench-
marks. As described in Sect. 2, the key component of our 
KB+Text search is the occurs-with relation, which searches 
for co-occurrences of the specified words/entities. We com-
pare three segmentations for determining co-occurrence, 
as described in Sect. 2.2: sections, sentences, and semantic 
contexts.

Compared to sentences, semantic contexts decrease the 
(large) number of false-positives significantly for all three 
benchmarks.6 Using co-occurence on the section level we 
can observe a decrease in the number of false-negatives (a 
lot of them due to random co-occurrence of query words 
in a section). However, this does not outweigh the drastic 

DCG =

#rel
∑

i=1

rel(i)

log2(1 + i)

Table 1   Sum of false-positives 
and false-negatives and averages 
for the other measures over all 
SemSearch, Wikipedia list and 
TREC queries for the evaluated 
system when running on 
sections, sentences or contexts

The averages for F1, R-Prec, MAP, nDCG are macro-averages over all queries (that is, for example, the F1 
in the first row is the average F1 of all SemSearch queries when running on sections). To get a feeling for 
the significance of the differences, the * and † denote a p-value of < 0.02 and < 0.003, respectively, for the 
two-tailed t-test compared to the figures for sentences

#FP #FN Prec. Recall F1 R-Prec MAP nDCG

SemSearch Sections 44,117 92 0.06 0.78 0.09 0.32 0.42 0.44
Sentences 1361 119 0.29 0.75 0.35 0.32 0.50 0.49
Contexts 676 139 0.39 0.67 0.43† 0.52 0.45 0.48

WP lists Sections 28,812 354 0.13 0.84 0.21 0.38 0.33 0.41
Sentences 1758 266 0.49 0.79 0.58 0.65 0.59 0.68
Contexts 931 392 0.61 0.73 0.64* 0.70 0.57 0.69

TREC Sections 6890 19 0.05 0.82 0.08 0.29 0.29 0.33
Sentences 392 38 0.39 0.65 0.37 0.62 0.46 0.52
Contexts 297 36 0.45 0.67 0.46* 0.62 0.46 0.55

6  For the TREC benchmark even the number of false-negatives 
decreases. This is because when segmenting into contexts the docu-
ment parser pre-processes Wikipedia lists by appending each list item 
to the preceding sentence. These are the only types of contexts that 
cross sentence boundaries and a rare exception. For the Wikipedia 
list benchmark we verified that this technique does not include results 
from the lists from which we created the ground truth.
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increase of the number of false-positives. Overall, semantic 
contexts yield the best precision on all three benchmarks, 
and also the best F-measure. This confirms the positive 
impact on the user experience that we have observed.

4.5 � Error Analysis

KB+Text search, as described in Sect. 2 is a complex task, 
with many potential sources for errors. For the TREC bench-
mark, using contexts as segments, we manually investigated 
the reasons for the false-positives and false-negatives. We 
defined the following error categories.
For false-positives:
(FP1) a true hit was missing from the ground truth;
(FP2) the context has the wrong meaning;7

(FP3) a mistake in the knowledge base;
(FP4) a mistake in the entity recognition;
(FP5) a mistake by the parser;8

(FP6) a mistake in computing contexts.
For false-negatives:
(FN1) there seems to be no evidence for this entity in Wiki-
pedia based on the query we used (the fact might be present 
but expressed using different words);
(FN2) the query elements are spread over two or more 
sentences;
(FN3) a mistake in the knowledge base;
(FN4) a mistake in the entity recognition;
(FN5) a mistake by the parser (analogous to FP5);
(FN6) a mistake in computing contexts.
Table 2 provides the percentage of errors in each of these 
categories. The high number in FP1 is great news for us: 
many entities are missing from the ground truth but were 

found by the system. Errors in FN1 occur when full-text 
search with our queries on whole Wikipedia documents does 
not yield hits, independent from semantic contexts. Tuning 
queries or adding support for synonyms can decrease this 
number. FP2 and FN2 comprise the most severe errors. They 
contain false-positives that still match all query parts in the 
same context but have a different meaning and false-nega-
tives that are lost because contexts are confined to sentence 
boundaries. Fortunately, both numbers are quite small.

The errors in categories FP and FN 3–5 depend on 
implementation details and third-party components. The 
high number in FN3 is due to errors in the used knowledge 
base, YAGO. A closer inspection revealed that, although 
the triples in YAGO are reasonably accurate, it is vastly 
incomplete in many areas. For example, the acted-in relation 
contains only one actor for most movies. This could be miti-
gated by switching to a more comprehensive knowledge base 
like Freebase [25]; indeed, our latest demo of Broccoli is 
using Freebase instead of YAGO [1]. To mitigate the errors 
caused by entity recognition and anaphora resolution (FP4 + 
FN4), a more sophisticated state-of-the-art approach is eas-
ily integrated. Parse errors are harder. The current approach 
for determining contexts heavily relies on the output of a 
state-of-the art constituent parser. Assuming a perfect parse 
for every single sentence, especially those with flawed gram-
mar, is not realistic. Still, those errors do not expose limits of 
KB+Text search with semantic contexts. The low number of 
errors due to the context computation (FP6 + FN6) demon-
strates that the current approach (Sect. 2.2) is already pretty 
good. Fine-tuning the way we decompose sentences might 
decrease this number even further.

Table 3 provides an updated evaluation, with all the errors 
induced by “third-party” components (namely FP and FN 
3, 4, 5) corrected. The last row shows the high potential of 
KB+Text search and motivates further work correcting the 
respective errors. As argued in the discussion after Table 2, 

Table 2   Breakdown of all errors by category

#FP FP1 FP2 FP3 FP4 FP5 FP6
297 55% 11% 5% 12% 16% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6
36 22% 6% 26% 21% 16% 8%

Table 3   Quality measures 
for the TREC benchmark for 
the original ground truth, with 
missing relevant entities, and 
with errors from categories FP 
and FN 3,4,5 corrected

Prec. Recall F1 P@10 R-Prec MAP nDCG

TREC entity track, best n/a n/a n/a 0.45 0.55 n/a 0.22
KB+Text, orig 0.45 0.67 0.46 0.58 0.62 0.46 0.55
KB+Text, orig + miss 0.67 0.73 0.65 0.79 0.77 0.62 0.70
KB+Text, orig + miss + corr 0.88 0.89 0.86 0.94 0.92 0.85 0.87

7  This means that the words occur in the context, but with a meaning 
different from what was intended by the query.
8  The sentence parses are required to compute contexts.
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many corrections are easily applied, while some of them 
remain hard to correct perfectly.

The first line of Table 3 shows the best results from the 
TREC 2009 Entity Track (TET09), when restricted to enti-
ties from the English Wikipedia; see [7, Table 10]. There 
are a few things to note in this comparison. First, TET09 
used the ClueWeb09 collection, category B. However, that 
collection contains the English Wikipedia, and participants 
were free to restrict their search to that part only. Indeed, 
the best systems strongly boosted results from Wikipedia. 
Second, results for TET09 were not sets but ranked lists of 
entities, hence absolute precision and recall figures are not 
available. Our results are for the simplistic ranking explained 
above. Third, we created our queries manually, as described 
at the end of Sect. 4.2 above. However, TET09 also permit-
ted manually constructed queries, but those results were not 
among the best. Fourth, the ground truth was approximated 
via pooling results from the then participating systems [6]. 
This is a disadvantage for systems that are evaluated later 
on the same ground truth [26]. Still, our quality results are 
better even on the original ground truth, and much better 
with missing entities (FP1) added.

5 � Conclusions and Future Work

We have evaluated the quality of KB+Text search on three 
benchmarks, with very promising results. A detailed error 
analysis has pointed out the current weak spots: missing 
entities in the knowledge base, missing evidence in the full 
text, errors in the entity recognition, errors in the full parses 
of the sentences. Promising directions for future research are 
therefore: switch to a richer knowledge base (e.g., Freebase), 
switch to a larger corpus than Wikipedia (e.g., ClueWeb), 
develop a more sophisticated entity recognition, try to deter-
mine semantic context without full parses.
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