
Vol.:(0123456789)1 3

Künstl Intell (2018) 32:19–26
DOI 10.1007/s13218-017-0513-9

TECHNICAL CONTRIBUTION

A Quality Evaluation of Combined Search on a Knowledge Base
and Text

Hannah Bast1 · Björn Buchhold1 · Elmar Haussmann1

Received: 21 June 2017 / Accepted: 14 September 2017 / Published online: 6 October 2017
© Springer-Verlag GmbH Deutschland 2017

1  Introduction

KB+Text search combines structured search in a knowledge
base (KB) with traditional full-text search.

In traditional full-text search, the data consists of text
documents. The user types a (typically short) list of key-
words and gets a list of documents containing some or all
of these keywords, hopefully ranked by some notion of rel-
evance to the query. For example, typing broccoli leaves
edible in a web search engine will return lots of web pages
with evidence that broccoli leaves are indeed edible.

In KB search, the data is a knowledge base, typically
given as a (large) set of subject-predicate-object triples. For
example, Broccoli is-a plant or Broccoli native-to Europe.
These triples can be thought of to form a graph of enti-
ties (the nodes) and relations (the edges), and a language
like SPARQL allows to search for subgraphs matching a
given pattern. For example, find all plants that are native
to Europe.

The motivation behind KB+Text search is that many que-
ries of a more “semantic” nature require the combination of
both approaches. For example, consider the query plants
with edible leaves and native to Europe, which will be our
running example in this paper. A satisfactory answer for this
query requires the combination of two kinds of information:

1.	 A list of plants native to Europe; this is hard for full-text
search but a showcase for knowledge base search.

2.	 For each plant the information whether its leaves are
edible or not; this is easily found with a full-text search
for each plant, but quite unlikely to be contained in a
knowledge base.

In a previous work [1], we have developed a system with
a convenient user interface to construct such queries

Abstract  We provide a quality evaluation of KB+Text
search, a deep integration of knowledge base search and
standard full-text search. A knowledge base (KB) is a set
of subject–predicate–object triples with a common nam-
ing scheme. The standard query language is SPARQL,
where queries are essentially lists of triples with variables.
KB+Text search extends this by a special occurs-with pred-
icate, which can be used to express the co-occurrence of
words in the text with mentions of entities from the knowl-
edge base. Both pure KB search and standard full-text search
are included as special cases. We evaluate the result quality
of KB+Text search on three different query sets. The corpus
is the full version of the English Wikipedia (2.4 billion word
occurrences) combined with the YAGO knowledge base (26
million triples). We provide a web application to reproduce
our evaluation, which is accessible via http://ad.informatik.
uni-freiburg.de/publications.

Keywords  Knowledge bases · Semantic search ·
KB+Text search · Quality evaluation

 *	 Hannah Bast
	 bast@cs.uni‑freiburg.de

	 Björn Buchhold
	 buchhold@cs.uni‑freiburg.de

	 Elmar Haussmann
	 haussmann@cs.uni‑freiburg.de

1	 Department of Computer Science, University of Freiburg,
79110 Freiburg, Germany

http://ad.informatik.uni-freiburg.de/publications
http://ad.informatik.uni-freiburg.de/publications
http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-017-0513-9&domain=pdf

20	 Künstl Intell (2018) 32:19–26

1 3

incrementally, with suggestions for expanding the query
after each keystroke. We named the system Broccoli, after a
variant of the example query above, which was our very first
test query. Figure 1 shows a screenshot of Broccoli in action
for this example query.

1.1 � Our Contribution

The main contribution of this paper is a quality evaluation of
KB+Text search on three benchmarks, including a detailed
error analysis; see Sect. 4. On the side, we recapitulate the
basics of KB+Text search (Sect. 2) and we provide a brief
but fairly broad overview of existing quality evaluations for
related kinds of “semantic search” (Sect. 3).

2 � The Components of KB+Text Search

We briefly describe the main components of a system for
KB+Text search, as far as required for understanding the
remainder of this paper. KB+Text search operates on two

kinds of inputs, a knowledge base and a text collection. The
knowledge base consists of entities and their relations in the
form of triples. The text collection consists of documents
containing plain text. This input is pre-processed, indexed,
and then queried as follows.

2.1 � Entity Recognition

In a first step, mentions of entities from the given knowl-
edge base are recognized in the text. Consider the following
sentence:

(S) The usable parts of rhubarb are the medicinally used
roots and the edible stalks, however its leaves are toxic.

Assuming the provided knowledge base contains the
entity Rhubarb, the words rhubarb and its are references to
it. When we index the English Wikipedia and use YAGO as
a knowledge base, we make use of the fact that first occur-
rences of entities in Wikipedia documents are linked to their
Wikipedia page that identifies a YAGO entity. Whenever
a part or the full name of that entity is mentioned again in
the same section of the document (for example, Einstein

Words

Cabbage (34)
Broccoli (58)

Lettuce (23)

Instances:

1 - 3 of 421

House plant (17)
Garden plant (24)

Crop (16)

Classes:

1 - 3 of 28
 Broccoli

Ontology: Broccoli
Broccoli: is a plant; native to Europe.

Document: Edible plant stems
The edible portions of Broccoli are the stem tissue, the flower buds, as
well as the leaves.

Cabbage
Ontology: Cabbage
Cabbage: is a plant; native to Europe.
 Document: Cabbage
The only part of the plant that is normally eaten is the leafy head.

Your Query:
Plant

occurs-with edible leaves

native-to

Hits: 1 - 2 of 421

Europe

occurs-with <Anything>

Relations:

1 - 3 of 7

cultivated-in <Location>
belongs-to <Plant family>

(67)
(58)

 type here to extend your query …

Fig. 1   A screenshot of Broccoli, showing the final result for our
example query. The box on the top right visualizes the current
KB+Text query as a tree. The large box below shows the matching
instances (of the class from the root node, plant in this case). For each
instance, evidence is provided for each part of the query. In the panel
on the left, instances are entities from the knowledge base, classes are
groups of entities with the same object according to the is-a predi-
cate, and relations are predicates. The instances are ranked by the
number of pieces of evidence (only a selection of which are shown).
With the search field on the top left, the query can be extended fur-

ther. Each of the four boxes below the search field provide context-
sensitive suggestions that depend on the current focus in the query.
For the example query: suggestions for subclasses of plants, sugges-
tions for instances of plants that lead to a hit, suggestions for rela-
tions to further refine the query. Word suggestions are displayed as
soon as the user types a prefix of sufficient length. These suggestions
together with the details from the hits box allow the user to incre-
mentally construct adequate queries without prior knowledge of the
knowledge base or of the full text

21Künstl Intell (2018) 32:19–26	

1 3

referring to Albert Einstein), we recognize it as that entity.
We resolve references (anaphora) by assigning each occur-
rence of he, she, it, her, his, etc. to the last recognized entity
of matching gender. For text without Wikipedia annotations,
state-of-the art approaches for named entity recognition and
disambiguation, such as Wikify! [2], can be used instead.

2.2 � Text Segmentation

The special occurs-with relation searches for co-occurrences
of words and entities as specified by the respective arc in the
query; see Fig. 1 and Sect. 2.4 below. We identify segments
in the input text to which co-occurrence should be restricted.
Identifying the ideal scope of these segments is non-trivial
and we experiment with three settings: (1) complete sec-
tions, (2) sentences and (3) contexts, which are parts of sen-
tences that “belong together” semantically. The contexts for
our example sentence (S) from above are:

(C1) The usable parts of rhubarb are the medicinally used
roots
(C2) The usable parts of rhubarb are the edible stalks
(C3) however rhubarb leaves are toxic

Note that, because entities and references (underlined words)
have been identified beforehand, no information is lost. The
rationale behind contexts is to make the search more precise
and “semantic”. For example, we would not want Rhubarb
to be returned for a query for plants with edible leaves, since
its leaves are actually toxic. Nevertheless Rhubarb, edible,
and leaves co-occur in sentence (S) above. However, they do
not co-occur in either of (C1), (C2), (C3). To compute con-
texts, we follow an approach for Open Information Extrac-
tion (OIE) described in [3].

2.3 � Indexing

An efficient index for KB+Text search is described in [4].
This index provides exactly the support needed for the sys-
tem shown in Fig. 1: efficient processing of tree-shaped
KB+Text queries (without variables for relations), efficient
excerpt generation, and efficient search-as-you-type sug-
gestions that enable a fully interactive incremental query
construction.

2.4 � Query Language

KB+Text extends ordinary KB search by the special occurs-
with predicate. This predicate can be used to specify co-
occurrence of a class (e.g., plant) or instance (e.g., Broc-
coli) with an arbitrary combination of words, instances,
and further sub-queries. When processing the query, this

co-occurrence is restricted to the segments identified in the
pre-processing step described in Sect. 2.2 above.

A user interface, like the one shown in Fig. 1, guides
the user in incrementally constructing queries from this lan-
guage. In particular, a visual tree-like representation of the
current query is provided after each keystroke, along with
hits for that query and suggestions for further extensions or
refinements.

3 � Related Work

The literature on semantic search technologies is vast,
and “semantic” means many different things to different
researchers. A variety of different and hard-to-compare
benchmarks have therefore emerged, as well as various
stand-alone evaluations of systems that perform KB+Text
or variants of it.

We briefly discuss the major benchmarks from the past
decade, as well as the relatively few systems that explicitly
combine full-text search and knowledge base search. A com-
prehensive survey of the broad field of semantic search on
text and/or knowledge bases is provided in [5].

3.1 � TREC Entity Tracks

The goal of the TREC Entity Tracks were queries search-
ing for lists of entities, just like in our KB+Text search.
They are particularly interested in lists of entities that are
related to a given entity in a specific way. Thus, the task is
called “related entity finding”. A typical query is airlines
that currently use boeing 747 planes. Along with the query,
the central entity (boeing 747) as well as the the type of the
desired target entities (airlines) were given.

For the 2009 Entity Track [6], the underlying data was
the ClueWeb09 category B collection. ClueWeb091 is a
web corpus consisting of 1 billion web pages, of which
500 million are in English. The category B collection is
a sub-collection of 50 million of the English pages. Runs
with automatic and manual query construction were evalu-
ated. This task turned out to be very hard, and the overall
best system achieved an NDCG@R of 31% and a P@10
of only 24%—albeit with automatic query construction.
When restricting the results to entities from Wikipedia, the
best system achieved an NDCG@R of 22% and a P@10 of
45% [7]. We use the queries from this track as one of our
benchmarks in Sect. 4 (for later tracks no Wikipedia based
groundtruth is available).

For the 2010 Entity Track [8], the full English portion
of the ClueWeb09 dataset was used (500 million pages).

1  http://lemurproject.org/clueweb09/.

http://lemurproject.org/clueweb09/

22	 Künstl Intell (2018) 32:19–26

1 3

The task remained hard, with the best system achieving
an NDCG@R of 37% and an R-Precision (P@10 was not
reported that year) of 32% even for manually tuned queries
(and 30% for automatic runs).

In 2010, an additional task was added, Entity List Com-
pletion (a similar task but with an additional set of example
result entities given for each query) with BTC 2009 as the
underlying dataset.2 This is a dataset consisting of 1.14 bil-
lion triples crawled from the semantic web. The BTC dataset
contains the complete DBpedia [9]. It turned out that the
best performing approaches all boost triples from DBpe-
dia to obtain good results. Still, working with the dataset
turned out to be difficult, with the best systems achieving an
R-Precision of 31% (NDCG@R was not reported).

In the 2011 track [10], another semantic web dataset was
used (Sindice [11]). However, the number of participating
teams was very low, and results were disappointing com-
pared to previous years.

3.2 � SemSearch Challenges

The task in the SemSearch challenges is also referred to
as ad-hoc object retrieval [12]. The user inputs free-form
keyword queries, e.g. Apollo astronauts who walked on the
moon or movies starring Joe Frazier. Results are ranked
lists of entities. The benchmarks were run on BTC 2009 as
a dataset.

In the 2010 challenge [12], there were 92 queries, each
searching only for a single entity. The best system achieved
a P@10 of 49% and a MAP of 19%.

In the 2011 challenge [13], there were 50 queries. The
best system achieved a P@10 of 35% and a MAP of 28%.
The 2011 queries are one of our benchmarks in Sect. 4.

3.3 � The INEX Series

Initiative for the Evaluation of XML Retrieval (INEX) has
featured many search tasks. While the focus is on XML
retrieval, two tracks are remarkably similar to the bench-
marks discussed before.

The Entity Ranking Track (from 2007 to 2009) and
the Linked-Data Track (2012 and 2013) work on the text
from Wikipedia and use intra-Wikipedia links to establish
a connection between entities and an ontology or an entire
knowledge base (since 2012, entities are linked to their rep-
resentation in DBpedia). Queries are very similar to those of
the TREC Entity Track from above: given a keyword query
(describing a topic) and a category, find entities from that
category relevant for that topic. However, few participants

actually made use of linked data in their approaches and the
results were inconclusive.

3.4 � Question Answering

Question answering (QA) systems provide a functionality
similar to KB+Text. The crucial difference is that questions
can be asked in natural language (NL), which makes the
answering part much harder. Indeed, the hardest part for
most queries in the QA benchmarks is to “translate” the
given NL query into a query that can be fed to the underly-
ing search engine.

In the TREC QA tracks, which ran from 1999 to 2007,
the underlying data were corpora of text documents. An
overview of this long series of tracks is given in [14]. The
corpora were mainly newswire documents, later also blog
documents. The series started with relatively simple fac-
toid questions, e.g. Name a film in which Jude Law acted,
and ended with very complex queries based on sequences
of related queries, including, e.g., temporal dependencies.
For list questions, such as Who are 6 actors who have played
Tevye in ‘Fiddler on the Roof’?, which are similar to the kind
we consider in this paper, the best system in 2007 achieved
an F-measure of 48%.

In the Question Answering over Linked Data (QALD)
series of benchmarks [15], the underlying data is again a
large set of fact triples. The task is to generate the correct
SPARQL query from a given NL question of varying diffi-
culty, e.g. Give me all female Russian astronauts [16]. This
is very different from the other benchmarks described above,
where a perfect query (SPARQL or keyword) typically does
not exist.

The various tracks used different sets of facts triples from
DBpedia and MusicBrainz (facts about music). In the last
two runs, QALD-4 [17] and QALD-5 [18], the best system
achieved an an F-measure of 72 and 63%, respectively.

3.5 � Systems for KB+Text and Similar Paradigms

Systems for a combined search in text documents and knowl-
edge bases were previously proposed in [19] (ESTER), [20]
(Hybrid Search), [21] (Mímir), [22] (Semplore), and [23]
(Concept Search). None of these systems consider semantic
context as described in Sect. 2.2. For all these systems, only
a very limited quality evaluation has been provided.

Hybrid Search is evaluated on a very specialized corpus
(18K corporate reports on jet engines by Rolls Royce). For
Concept Search, a similarly small dataset of 29K documents
constructed from the DMoz web directory.

For ESTER, only two simple classes of queries are evalu-
ated: people associated with <university> and list of coun-
ties in <US state>. A precision of 37 and 67%, respectively,
is reported for each class.

2  BTC billion triple challenge, https://km.aifb.kit.edu/projects/btc-
2009/.

https://km.aifb.kit.edu/projects/btc-2009/
https://km.aifb.kit.edu/projects/btc-2009/

23Künstl Intell (2018) 32:19–26	

1 3

Semplore is evaluated on a combination of DBpedia
(facts from Wikipedia) and LUBM (an ontology for the
university domain). A P@10 of more than 80% is reported
for 20 manually constructed queries. For many of those, the
text part is simply keyword search in entity names, e.g., all
awards containing the keywords nobel prize. Those queries
then trivially have perfect precision and recall. We have only
a single such query in our whole quality evaluation, all other
queries combine knowledge base and full-text search in a
non-trivial manner.

Mímir is only evaluated with respect to query response
times and in a user study where users were asked to perform
four search tasks. For these tasks, success and user satisfac-
tion with the system were tracked.

4 � Evaluation

4.1 � Input Data

The text part of our data is all documents in the English
Wikipedia, obtained via download.wikimedia.org in Janu-
ary 2013.3 Some dimensions of this collection: 40 GB XML
dump, 2.4 billion word occurrences (1.6 billion without
stop-words), 285 million recognized entity occurrences and
200 million sentences which we decompose into 418 mil-
lion contexts.

As knowledge base we used YAGO from October 2009.4
We manually fixed 92 obvious mistakes in the KB (for exam-
ple, the nobel prize was a laureate and hence a person), and
added the relation Plant native-in Location for demonstra-
tion purposes. Altogether our variant of YAGO contains
2.6 million entities, 19,124 classes, 60 relations, and 26.6
million facts.

We build a joint index over this full text and this KB, as
described in [4]. As described there, the resulting index file
has a size of 14 GB with query times typically well below
100 ms [4, Table 1].

4.2 � Query Benchmarks

We evaluated the quality of our KB+Text search on the data-
set just described on three query benchmarks. Each bench-
mark consists of a set of queries, and for each query the set
of relevant entities for that query from the knowledge base

(YAGO in our case). Two of these query benchmarks are
from past entity search competitions, described in Sect. 3:
the Yahoo SemSearch 2011 List Search Track [24] and the
TREC 2009 Entity Track [6]. The third query benchmark is
based on a random selection of ten Wikipedia featured List
of ... pages, similarly as in [19].

To allow reproducibility, we provide queries and rele-
vance judgments as well as the possibility to evaluate (and
modify) the queries against a live running system for the
SemSearch List Track and the Wikipedia lists under the link
provided in the abstract. The TREC Entity Track queries
were used for an in-depth quality evaluation that does not
allow for an easy reproduction. Therefore we do not provide
them in our reproducibility web application.

The SemSearch 2011 List Search Track consists of 50
queries asking for lists of entities in natural language, e.g.
Apollo astronauts who walked on the Moon. The publicly
available results were created by pooling the results of par-
ticipating systems and are partly incomplete. Furthermore,
the task used a subset of the BTC dataset (see Sect. 3), and
some of the results referenced the same entity several times,
e.g., once in DBpedia and once in OpenCyc. Therefore, we
manually created a new ground truth consisting only of
Wikipedia entities (compatible with our dataset). This was
possible because most topics were inspired by Wikipedia
lists and can be answered completely by manual investiga-
tion. Three of the topics did not contain any result entities in
Wikipedia, and we ignored one additional topic because it
was too controversial to answer with certainty (books of the
Jewish canon). This leaves us with 46 topics and a total of
384 corresponding entities in our ground truth. The original
relevance judgments only had 42 topics with primary results
and 454 corresponding entities, including many duplicates.

The TREC 2009 Entity Track worked with the
ClueWeb09 collection and consisted of 20 topics also ask-
ing for lists of entities in natural language, e.g. Airlines that
currently use Boeing 747 planes, but in addition provided
the source entity (Boeing 747) and the type of the target
entity (organization). We removed all relevance judgments
for pages that were not contained in the English Wikipedia;
this approach was taken before in [7] as well. This leaves us
with 15 topics and a total of 140 corresponding relevance
judgments.

As a third benchmark we took a random selection of ten
of Wikipedia’s over 2400 en.wikipedia.org/wiki/List_of_...
pages.5 For example, List of participating nations at the
Winter Olympic Games. These lists are manually created by
humans, but actually they are answers to semantic queries.
The lists also tend to be fairly complete, since they undergo
a review process in the Wikipedia community. This makes

3  The choice of this outdated version has no significant impact on the
insights from our evaluation: the corresponding Wikipedia data from
2017 is (only) about 50% larger but otherwise has the same character-
istics and would not lead to principally different results.
4  There is a more recent version, called YAGO2, but most of the
additions from YAGO to YAGO2 (spatial and temporal information)
are not interesting for our search. 5  http://en.wikipedia.org/wiki/Wikipedia:Featured_lists.

http://en.wikipedia.org/wiki/Wikipedia:Featured%5flists

24	 Künstl Intell (2018) 32:19–26

1 3

them perfectly suited for a quality evaluation of our system.
For the ground truth, we automatically extracted the list of
entities from the Wikipedia list pages. This leaves us with
ten topics and a total of 2367 corresponding entities in our
ground truth.

For all of these tasks we manually generated KB+Text
queries corresponding to the intended semantics of the origi-
nal queries. We relied on the interactive query suggestions
of the user interface, but did not fine-tune queries towards
the results. We want to stress that our goal is not a direct
comparison to systems that participated in the tasks above.
For that, input, collection and relevance judgments would
have to be perfectly identical. Instead, we want to evaluate
whether KB+Text can provide high quality results for these
tasks.

4.3 � Quality Measures

Table 1 displays set-related and ranking-related measures.
Our set-related measures include the numbers of false-posi-
tives (#FP) and false-negatives (#FN). We calculate the pre-
cision (Prec.) as the percentage of retrieved relevant entities
among all retrieved entities and the recall as the percentage
of retrieved relevant entities among all relevant entities. We
calculate the F-measure (F1) as the harmonic mean of preci-
sion and recall.

For our ranking-related measures, we ordered entities by
the number of matching segments. Let P@k be the percent-
age of relevant documents among the top-k entities returned
for a query. R-precision is then defined as P@R, where R is
the total number of relevant entities for the query. The aver-
age precision (AP) is the average over all P@i, where i are
the positions of all relevant entities in the result list. For rel-
evant entities that were not returned, a precision with value
0 is used for inclusion in the average. The mean average

precision (MAP) is then simply the average AP over all que-
ries. We calculate the discounted cumulative gain (DCG) as:

where rel(i) is the relevance of the entity at position i in the
result list. Usually, the measure supports different levels of
relevance, but we only distinguish 1 and 0 in our bench-
marks. The nDCG is the DCG normalized by the score
for a perfect DCG. Thus, we divide the actual DCG by the
maximum possible DCG for which we can simply take all
rel(i) = 1.

4.4 � Quality Results

Table 1 evaluates our quality measures for all three bench-
marks. As described in Sect. 2, the key component of our
KB+Text search is the occurs-with relation, which searches
for co-occurrences of the specified words/entities. We com-
pare three segmentations for determining co-occurrence,
as described in Sect. 2.2: sections, sentences, and semantic
contexts.

Compared to sentences, semantic contexts decrease the
(large) number of false-positives significantly for all three
benchmarks.6 Using co-occurence on the section level we
can observe a decrease in the number of false-negatives (a
lot of them due to random co-occurrence of query words
in a section). However, this does not outweigh the drastic

DCG =

#rel
∑

i=1

rel(i)

log2(1 + i)

Table 1   Sum of false-positives
and false-negatives and averages
for the other measures over all
SemSearch, Wikipedia list and
TREC queries for the evaluated
system when running on
sections, sentences or contexts

The averages for F1, R-Prec, MAP, nDCG are macro-averages over all queries (that is, for example, the F1
in the first row is the average F1 of all SemSearch queries when running on sections). To get a feeling for
the significance of the differences, the * and † denote a p-value of < 0.02 and < 0.003, respectively, for the
two-tailed t-test compared to the figures for sentences

#FP #FN Prec. Recall F1 R-Prec MAP nDCG

SemSearch Sections 44,117 92 0.06 0.78 0.09 0.32 0.42 0.44
Sentences 1361 119 0.29 0.75 0.35 0.32 0.50 0.49
Contexts 676 139 0.39 0.67 0.43† 0.52 0.45 0.48

WP lists Sections 28,812 354 0.13 0.84 0.21 0.38 0.33 0.41
Sentences 1758 266 0.49 0.79 0.58 0.65 0.59 0.68
Contexts 931 392 0.61 0.73 0.64* 0.70 0.57 0.69

TREC Sections 6890 19 0.05 0.82 0.08 0.29 0.29 0.33
Sentences 392 38 0.39 0.65 0.37 0.62 0.46 0.52
Contexts 297 36 0.45 0.67 0.46* 0.62 0.46 0.55

6  For the TREC benchmark even the number of false-negatives
decreases. This is because when segmenting into contexts the docu-
ment parser pre-processes Wikipedia lists by appending each list item
to the preceding sentence. These are the only types of contexts that
cross sentence boundaries and a rare exception. For the Wikipedia
list benchmark we verified that this technique does not include results
from the lists from which we created the ground truth.

25Künstl Intell (2018) 32:19–26	

1 3

increase of the number of false-positives. Overall, semantic
contexts yield the best precision on all three benchmarks,
and also the best F-measure. This confirms the positive
impact on the user experience that we have observed.

4.5 � Error Analysis

KB+Text search, as described in Sect. 2 is a complex task,
with many potential sources for errors. For the TREC bench-
mark, using contexts as segments, we manually investigated
the reasons for the false-positives and false-negatives. We
defined the following error categories.
For false-positives:
(FP1) a true hit was missing from the ground truth;
(FP2) the context has the wrong meaning;7

(FP3) a mistake in the knowledge base;
(FP4) a mistake in the entity recognition;
(FP5) a mistake by the parser;8

(FP6) a mistake in computing contexts.
For false-negatives:
(FN1) there seems to be no evidence for this entity in Wiki-
pedia based on the query we used (the fact might be present
but expressed using different words);
(FN2) the query elements are spread over two or more
sentences;
(FN3) a mistake in the knowledge base;
(FN4) a mistake in the entity recognition;
(FN5) a mistake by the parser (analogous to FP5);
(FN6) a mistake in computing contexts.
Table 2 provides the percentage of errors in each of these
categories. The high number in FP1 is great news for us:
many entities are missing from the ground truth but were

found by the system. Errors in FN1 occur when full-text
search with our queries on whole Wikipedia documents does
not yield hits, independent from semantic contexts. Tuning
queries or adding support for synonyms can decrease this
number. FP2 and FN2 comprise the most severe errors. They
contain false-positives that still match all query parts in the
same context but have a different meaning and false-nega-
tives that are lost because contexts are confined to sentence
boundaries. Fortunately, both numbers are quite small.

The errors in categories FP and FN 3–5 depend on
implementation details and third-party components. The
high number in FN3 is due to errors in the used knowledge
base, YAGO. A closer inspection revealed that, although
the triples in YAGO are reasonably accurate, it is vastly
incomplete in many areas. For example, the acted-in relation
contains only one actor for most movies. This could be miti-
gated by switching to a more comprehensive knowledge base
like Freebase [25]; indeed, our latest demo of Broccoli is
using Freebase instead of YAGO [1]. To mitigate the errors
caused by entity recognition and anaphora resolution (FP4 +
FN4), a more sophisticated state-of-the-art approach is eas-
ily integrated. Parse errors are harder. The current approach
for determining contexts heavily relies on the output of a
state-of-the art constituent parser. Assuming a perfect parse
for every single sentence, especially those with flawed gram-
mar, is not realistic. Still, those errors do not expose limits of
KB+Text search with semantic contexts. The low number of
errors due to the context computation (FP6 + FN6) demon-
strates that the current approach (Sect. 2.2) is already pretty
good. Fine-tuning the way we decompose sentences might
decrease this number even further.

Table 3 provides an updated evaluation, with all the errors
induced by “third-party” components (namely FP and FN
3, 4, 5) corrected. The last row shows the high potential of
KB+Text search and motivates further work correcting the
respective errors. As argued in the discussion after Table 2,

Table 2   Breakdown of all errors by category

#FP FP1 FP2 FP3 FP4 FP5 FP6
297 55% 11% 5% 12% 16% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6
36 22% 6% 26% 21% 16% 8%

Table 3   Quality measures
for the TREC benchmark for
the original ground truth, with
missing relevant entities, and
with errors from categories FP
and FN 3,4,5 corrected

Prec. Recall F1 P@10 R-Prec MAP nDCG

TREC entity track, best n/a n/a n/a 0.45 0.55 n/a 0.22
KB+Text, orig 0.45 0.67 0.46 0.58 0.62 0.46 0.55
KB+Text, orig + miss 0.67 0.73 0.65 0.79 0.77 0.62 0.70
KB+Text, orig + miss + corr 0.88 0.89 0.86 0.94 0.92 0.85 0.87

7  This means that the words occur in the context, but with a meaning
different from what was intended by the query.
8  The sentence parses are required to compute contexts.

26	 Künstl Intell (2018) 32:19–26

1 3

many corrections are easily applied, while some of them
remain hard to correct perfectly.

The first line of Table 3 shows the best results from the
TREC 2009 Entity Track (TET09), when restricted to enti-
ties from the English Wikipedia; see [7, Table 10]. There
are a few things to note in this comparison. First, TET09
used the ClueWeb09 collection, category B. However, that
collection contains the English Wikipedia, and participants
were free to restrict their search to that part only. Indeed,
the best systems strongly boosted results from Wikipedia.
Second, results for TET09 were not sets but ranked lists of
entities, hence absolute precision and recall figures are not
available. Our results are for the simplistic ranking explained
above. Third, we created our queries manually, as described
at the end of Sect. 4.2 above. However, TET09 also permit-
ted manually constructed queries, but those results were not
among the best. Fourth, the ground truth was approximated
via pooling results from the then participating systems [6].
This is a disadvantage for systems that are evaluated later
on the same ground truth [26]. Still, our quality results are
better even on the original ground truth, and much better
with missing entities (FP1) added.

5 � Conclusions and Future Work

We have evaluated the quality of KB+Text search on three
benchmarks, with very promising results. A detailed error
analysis has pointed out the current weak spots: missing
entities in the knowledge base, missing evidence in the full
text, errors in the entity recognition, errors in the full parses
of the sentences. Promising directions for future research are
therefore: switch to a richer knowledge base (e.g., Freebase),
switch to a larger corpus than Wikipedia (e.g., ClueWeb),
develop a more sophisticated entity recognition, try to deter-
mine semantic context without full parses.

References

	 1.	 Bast H, Bäurle F, Buchhold B, Haußmann E (2014) Semantic
full-text search with broccoli. In: SIGIR, ACM, pp 1265–1266

	 2.	 Mihalcea R, Csomai A (2007) Wikify! Linking documents to
encyclopedic knowledge. In: CIKM, pp 233–242

	 3.	 Bast H, Haussmann E (2013) Open information extraction via
contextual sentence decomposition. In: ICSC

	 4.	 Bast H, Buchhold B (2013) An index for efficient semantic full-
text search. In: CIKM

	 5.	 Bast H, Buchhold B, Haussmann E (2016) Semantic search on text
and knowledge bases. Found Trends Inf Retr 10(2–3):119–271.
doi:10.1561/1500000032

	 6.	 Balog K, de Vries AP, Serdyukov P, Thomas P, Westerveld T
(2009) Overview of the TREC 2009 entity track. In: TREC

	 7.	 Bron M, Balog K, de Rijke M (2010) Ranking related entities:
components and analyses. In: CIKM, pp 1079–1088

	 8.	 Balog K, Serdyukov P, de Vries AP (2010) Overview of the TREC
2010 entity track. In: TREC

	 9.	 Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes
PN, Hellmann S, Morsey M, van Kleef P, Auer S, Bizer C (2015)
Dbpedia—a large-scale, multilingual knowledge base extracted
from wikipedia. Sem Web 6(2):167–195

	10.	 Balog K, Serdyukov P, de Vries AP (2011) Overview of the TREC
2011 entity track. In: TREC

	11.	 Campinas S, Ceccarelli D, Perry TE, Delbru R, Balog K, Tumma-
rello G (2011) The sindice-2011 dataset for entity-oriented search
in the web of data. In: Workshop on entity-oriented search (EOS),
pp 26–32

	12.	 Halpin H, Herzig DM, Mika P, Blanco R, Pound J, Thompson HS,
Tran DT (2010) Evaluating ad-hoc object retrieval. In: Workshop
on evaluation of semantic technologies (WEST)

	13.	 Blanco R, Halpin H, Herzig DM, Mika P, Pound J, Thompson HS,
Duc TT (2011) Entity search evaluation over structured web data.
In: SIGIR workshop on entity-oriented search (JIWES)

	14.	 Dang HT, Kelly D, Lin JJ (2007) Overview of the TREC 2007
question answering track. In: TREC

	15.	 Lopez V, Unger C, Cimiano P, Motta E (2013) Evaluating question
answering over linked data. J Web Sem 21:3–13

	16.	 Cimiano P, Lopez V, Unger C, Cabrio E, Ngomo ACN, Walter S
(2013) Multilingual question answering over linked data (QALD-
3): lab overview. In: CLEF, pp 321–332

	17.	 Unger C, Forascu C, López V, Ngomo AN, Cabrio E, Cimiano P,
Walter S (2014) Question answering over linked data (QALD-4).
In: Working notes for CLEF 2014 conference, Sheffield, 15–18
Sept 2014, pp 1172–1180

	18.	 Unger C, Forascu C, López V, Ngomo AN, Cabrio E, Cimiano P,
Walter S (2015) Question answering over linked data (QALD-5).
In: Working notes of CLEF 2015—conference and labs of the
evaluation forum, Toulouse, 8–11 Sept 2015

	19.	 Bast H, Chitea A, Suchanek FM, Weber I (2007) Ester: efficient
search on text, entities, and relations. In: SIGIR, pp 671–678

	20.	 Bhagdev R, Chapman S, Ciravegna F, Lanfranchi V, Petrelli
D (2008) Hybrid search: effectively combining keywords and
semantic searches. In: ESWC, pp 554–568

	21.	 Tablan V, Bontcheva K, Roberts I, Cunningham H (2015) Mímir:
an open-source semantic search framework for interactive infor-
mation seeking and discovery. J Web Sem 30:52–68

	22.	 Wang H, Liu Q, Penin T, Fu L, Zhang L, Tran T, Yu Y, Pan Y
(2009) Semplore: a scalable IR approach to search the web of
data. J Web Sem 7(3):177–188

	23.	 Giunchiglia F, Kharkevich U, Zaihrayeu I (2009) Concept search.
In: ESWC, pp 429–444

	24.	 Tran T, Mika P, Wang H, Grobelnik M (2011) SemSearch’11: the
4th semantic search workshop. In: WWW (companion volume)

	25.	 Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008)
Freebase: a collaboratively created graph database for structuring
human knowledge. In: SIGMOD, pp 1247–1250

	26.	 Sanderson M (2010) Test collection based evaluation of informa-
tion retrieval systems. Found Trends Inf Retr 4(4):247–375

https://doi.org/10.1561/1500000032

	A Quality Evaluation of Combined Search on a Knowledge Base and Text
	Abstract
	1 Introduction
	1.1 Our Contribution

	2 The Components of KB+Text Search
	2.1 Entity Recognition
	2.2 Text Segmentation
	2.3 Indexing
	2.4 Query Language

	3 Related Work
	3.1 TREC Entity Tracks
	3.2 SemSearch Challenges
	3.3 The INEX Series
	3.4 Question Answering
	3.5 Systems for KB+Text and Similar Paradigms

	4 Evaluation
	4.1 Input Data
	4.2 Query Benchmarks
	4.3 Quality Measures
	4.4 Quality Results
	4.5 Error Analysis

	5 Conclusions and Future Work
	References

