
Efficient Two-Sided Error-Tolerant Search

Hannah Bast Marjan Celikik

University of Freiburg, Germany

{bast,celikik}@informatik.uni-freiburg.de

ABSTRACT
We consider fast two-sided error-tolerant search that is ro-
bust against errors both on the query side (type alogrithm,
find documents with algorithm) as well as on the document
side (type algorithm, find documents with alogrithm). We
show how to realize this feature with an index blow-up of
10% to 20% and an increase in query time by a factor of
at most 2. We have integrated our two-sided error-tolerant
search into a fully-functional search engine, and we provide
experiments on three data sets of different kinds and sizes.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess; H.3.4 [Systems and Software]: Performance evalua-
tion (efficiency and effectiveness)

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords

Error-Tolerant Search, Fuzzy Search

1. INTRODUCTION
Users make mistakes when typing their queries into a

search engine, either because they mistype the keywords or
because they do not know the correct spelling of the key-
words they have in mind. It is therefore one of the most
important features of a search engine to be robust against
such mistakes on the side of the user.

But the text collections indexed by the search engine also
contain misspellings, either made by those who have writ-
ten the documents or incurred in the process of converting
the documents in electronic form (e.g. OCR). For exam-
ple, even in the extremely carefully hand-maintained DBLP
metadata, there are 17 papers with probalistic in the title.
For an application like literature search, it is an equally im-
portant feature as the one above to find these 17 papers when
typing the correct word probabilistic as (part of) a query.

In this short paper, we will show how to realize such two-
sided error-tolerant search both efficiently and with good
error robustness.

2. RELATED WORK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KEYS’10, June 6, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0187-9/10/06 ...$10.00.

There is an enormous body of literature on finding words
similar to a given query word in a large lexicon efficiently;
see [2] for a list of references. The straightforward way to use
this for text search that is robust against spelling errors is to
replace each query word by a disjunction (OR) of its similar
words. We call this algorithm BASELINE here. BASELINE
is all but efficient: on a collection like Wikipedia, almost any
word has hundreds of reasonably similar words; see Section
4. A simple remedy would be to consider only selected sim-
ilar words (for example, the most frequent ones), but that
obviously affects recall.

There is surprisingly little work on efficient high-recall
error-tolerant search, as described in the introduction. And
there is hardly any work that deals with both kinds of errors:
on the side of the query and on the side of the documents.
A prior work from [2] deals only with errors of the second
type. In [3], both kinds of errors are addressed by suggesting
an alternative to BASELINE. However, there is an improve-
ment only for queries with multiple keywords and then only
when one of the keywords is much more specific than the
others. For many typical queries, their approach therefore
is not much faster than BASELINE.

3. OUR ALGORITHM
Like in [2], we measure the similarity of two words w and v

by their normalized edit distance, denoted by ED0(w, v). We
define ED0(w, v) := ED(w, v)/max{|w|, |v|}, where ED is
the standard edit distance. Note that ED0(w, v) is always in
[0, 1], reaching 0 iff w = v, and reaching 1 iff w and v have no
character in common. A convenient property of ED0(w, v)
is that the edit distance threshold is automatically increased
on longer and decreased on shorter words.1

3.1 Clustering of the Vocabulary
The vocabulary of a document collection is the set of dis-

tinct words occurring in it. Our algorithm is based on a
clustering of the words in the vocabulary. The clusters may
overlap, that is, a word may belong to more than one clus-
ter. Before we can state what makes a good clustering, we
need some definitions.

Definition 1. Consider a fixed clustering and a fixed
similarity threshold δ. For a query word q, that may or
may not be in the vocabulary, let Sq = {w : ED0(q, w) ≤ δ
be the set of words similar to q. An exact cover of Sq is a
set of clusters whose union C contains Sq. An approximate
cover does not necessarily contain all of Sq. The recall of
a cover (exact or approximate) is defined as |Sq ∩ C|/|Sq |.
The precision of a cover (exact or approximate) is defined
as |Sq ∩C|/|C|. Recall and precision of a cover are 100% if
and only if Sq = C. Finally, we define the cover index of a
cover as the number of clusters in the cover.
1The normalized edit distance threshold for our experiments was
set to 0.28, as suggested in [2]

Now for each query word q we want to find a cover of
Sq with the following properties: (C1) cover index as small
as possible, (C2) recall as large as possible, and (C3) pre-
cision as large possible. As will see below, the cover index
determines the blow-up in query time compared to an ordi-
nary (non error-tolerant) query. Finally, we also want the
frequency-weighted cluster overlap to be as small as possi-
ble (C4). This overlap is defined as

∑
w
tfw · cw/

∑
w
tfw,

where the sum is over all words w in the vocabulary, tfw is
the total number of occurrences of a word w, and cw is the
number of clusters containing w. As we will see this ratio
is exactly the blow-up in index space compared to an index
for ordinary (not error-tolerant) search.

3.2 Using the Clustering
Assume we have a clustering with favorable properties

(C1) - (C4) from above. Our algorithm consists of the fol-
lowing components:

Indexing Time. For each occurrence of a word w, say
house, determine the ids of the clusters containing house,
say 165 and 9823, and then add the corresponding words
C:165:house and C:9823:house to the index (this is done
once for every occurrence of the word).

Query Time. For each query word q, compute the clus-
ter ids of a cover of Sq, say 4325 and 23, and then re-
place that query word by the disjunction of prefix queries
C:4325:*|C:23:*, where * and | are the prefix and dis-
junction operators, respectively. To process the transformed
queries, which are conjunctions of disjunctions of prefix
queries, we use the HYB index from [1].

Minimal Cover Index. The following greedy strategy finds
a cover of Sq with minimal cover index: consider all clus-
ters containing words from Sq; start by picking the cluster
containing the largest number of words from Sq , preferring
smaller clusters in the case of ties; take this cluster and the
covered words out of consideration and iterate.

3.3 Computing a Clustering
Our clustering algorithm is based on the following two ob-

servations. First, valid words (which are usually frequent)
are the natural cluster centroids of their spelling variants.
Second, to minimize the frequency weighted cluster overlap,
cw should depend on the frequency of w, with very frequent
words assigned to a single cluster.

Given the sorted list of words in order of decreasing term
frequency we pick the first word as cluster centroid and com-
pute and mark each word in its neighborhood of similar
words. We proceed by picking the next unmarked word in
the list and stop once a cut-off frequency is reached. Next,
we assign the closest cw centroids to each marked word w,
where cw depends on tfw. Finally, very infrequent words get
a special treatment, in that their clusters are forced to be
non-overlapping. With these ideas we achieve a clustering
with average cover index of 4 or less (C1), an average re-
call always over 90% (C2), an average precision of over 60%
(C3), and index space blow-up of less than 20% (C4) (as well
as various trade-offs among the four). Note that precision
of the cover is the least critical of all four aspects, since we
rank our results by the edit distance of the matching words
to the respective query words.

4. EXPERIMENTS
Our experiments were carried out on three datasets of dif-

ferent sizes and kinds. Our largest collection is the January
2009 dump of the English Wikipedia, with 9.3 million arti-
cles and a vocabulary of 8.5 million words. DBLP-Full is a
collection of 31,211 computer science articles, with a vocabu-
lary of 1.0 million words and many OCR errors. DBLP-Meta
is a relatively clean collection of 1.3 million BibTeX entries.

We generated 1000 (frequent and infrequent) single-keyword
queries by randomly selecting keywords from the collection,
and applying between 0 and 3 random edits.

4.1 Query Processing Overhead
Table 1 shows that the blow-up in query time of our two-

sided error-tolerant search compared to ordinary (not error-
tolerant) search is about a factor of 2 or less, quite inde-
pendently of the size and kind of the collection, where for
BASELINE this factor is more than 20. To verify that the
results are not affected by our implementation, we repeated
the experiment on BASELINE with the Lucene2 search en-
gine and obtained similar running times.

Table 1: Average query times.

DBLP-Meta DBLP-Full Wikipedia

ORDINARY 1.26 ms 6.8 ms 61.0 ms
OUR METHOD 2.0 ms 11.2 ms 112.6 ms

BASELINE 11.9 ms 121.6 ms 1468.2 ms

avg. clusters 2.4 2.2 4.1
avg. similar words 20 70 77

4.2 Quality
Table 2 shows that we can achieve an average cover re-

call of over 95% and an average cover precision of about
60% for the query processing overhead from Table 1. Re-
sults for DBLP-Metadata are not shown but are similar. We
note that we could achieve 100% cover recall at the cost of
doubling the query time. As already noted in Section 3, a
medium cover precision is fine for us since the result hits are
ranked by the edit distance of the matching words to the
respective query words.

Table 2: Cover precision and recall

length 4-6 7-9 10+ overall
frequency high low high low high low high low

DBLP-Full

recall .91 .97 .98 .99 .98 .99 .96 .99
precision .64 .60 .71 .64 .73 .60 .69 .61

Wikipedia

recall .90 .90 .95 .96 .97 .99 .93 .95
precision .60 .50 .61 .54 .68 .68 .63 .57

4.3 Index Size and Construction Time
Table 3 shows that the blow-up in index space is at most

20% for all three collections. Indexing time roughly doubles,
since our clustering algorithm takes about as long as the rest
of the indexing process. We work to improve on this in the
future.

Table 3: Index sizes.

DBLP-Meta DBLP-Full Wikipedia

ORDINARY 91 MB 414 MB 8.4 GB
OUR METHOD 115 MB 472 MB 9.5 GB

5. REFERENCES
[1] H. Bast and I. Weber.

Type less, find more: fast autocompletion search
with a succinct index. In SIGIR, pages 364–371, 2006.

[2] M. Celikik and H. Bast. Fast error-tolerant search
on very large texts. In SAC, pages 1724–1731, 2009.

[3] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive
fuzzy keyword search. In WWW, pages 371–380, 2009.

2
http://lucene.apache.org/

http://lucene.apache.org/

	Introduction
	Related Work
	Our Algorithm
	Clustering of the Vocabulary
	Using the Clustering
	Computing a Clustering

	Experiments
	Query Processing Overhead
	Quality
	Index Size and Construction Time

	References

