
Quick and Energy-Efficient Routes – Computing
Constrained Shortest Paths for Electric Vehicles

Sabine Storandt
FMI, Universität Stuttgart

Stuttgart, Germany
storandt@fmi.uni-stuttgart.de

ABSTRACT
In this paper we study multi-criteria routing problems re-
lated to Electric Vehicles (EVs). Because EVs still suffer
from a rather small cruising range restricted by the bat-
tery’s capacity, and loading stations are sparse and reloading
is time intensive, previous work focused on computing the
most energy-efficient routes efficiently. Unfortunately these
approaches do not guarantee anything in terms of distance
or travel time. But even a very eco-friendly driver might not
be willing to accept a tour three times as long as the quickest
one to save some energy. Therefore we present new types
of queries considering energy-consumption and distance or
travel time and reloading effort, e.g. computing the shortest
or quickest path on which the EV does not run out of energy
while requiring at most k recharging events (with k being an
input parameter). The respective optimization problems are
instances of the constrained shortest path problem, which is
NP-hard. Nevertheless we will provide preprocessing tech-
niques that allow for fast query answering even in large street
graphs.

Categories and Subject Descriptors
G2.2 [DISCRETEMATHEMATICS]: Graph algorithms

General Terms
Algorithms

Keywords
Route Planning, Constrained Shortest Path, E-Mobility

1. INTRODUCTION
In recent years E-mobility has been identified as important
means to reduce the consumption of fossil fuels. Electric Ve-
hicles (EVs) are battery-powered and the necessary electric-
ity can be produced from regenerative sources. Furthermore
EVs typically exhibit lower emissions to their immediate en-
vironment in terms of combustion gases or noise levels. To
accelerate the widespread transition to E-Mobility several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL IWCTS’12, November 6, 2012. Redondo Beach, CA,
USA
Copyright c� 2012 ACM ISBN 978-1-4503-1693-4/12/11...$15.00

Figure 1: Small example for the diversity of
paths: The energy-optimal path (green, bottom) is
9.203km long, the shortest path (purple, top) only
8.824km. The shortest path on which the EV does
not run out of energy (black, middle) is only 11m
longer than the shortest one.

governments offer reduced taxes for EVs compared to fuel
driven cars, and provide federal funding for the development
of green technologies.

Nevertheless Electric Vehicles still wait for their great break-
through. One reason might be the restricted cruising range
of actual EVs (up to 150km) resulting from the limited bat-
tery capacity. Indeed in use, there is the possibility to re-
cuperate energy during deceleration phases or when going
downhill (as long as the battery’s capacity is not exceeded!),
but still recharging will be necessary when driving longer
tours. Here further inconveniences become noticeable: On
the one hand loading stations (LSs) are still sparse in most
countries – certainly not as widespread as gas stations –
therefore one can not just plan a trip and rely on the pres-
ence of nearby LSs when the battery charge level drops. On
the other hand reloading takes several hours hence it should
be avoided if possible. Therefore the energy-consumption
along a path should be as small as possible to stay mobile.
At the same time people are certainly not willing to ac-
cept considerably longer travel times just to save a few kWh
of energy. Therefore a fair trade-off needs to be achieved.
The following questions reflecting multi-criteria objectives
are natural from a user perspective (see Figure 1 for a bit of
illustration):

1. What is the shortest or quickest path on which the EV
does not run out of energy?

2. What is the most energy-efficient path which is at most
x times longer than the shortest one (e.g. x = 1.05)?

A path obeying the battery constraints (i.e. the EV does not
run on energy while respecting the prohibition of overcharg-

ing the battery) is also called feasible. If without reloading
there exists no feasible path from source to target, the de-
cisions how often and where to recharge have to be made
reasonably. So now we have to balance distance or time to
travel, energy consumption and reloading effort. This leads
to slightly more complex optimality criteria, which are re-
flected in the following query types:

3. Find the shortest/quickest feasible path with at most k
recharging events.

4. Find a feasible path with a minimal number of recharg-
ing events and bounded distance/travel time.

Note that the problems 2.-4. demand the input of a param-
eter which allows the user to modulate between eco-friendly
and fast or short routes. These kind of queries are called
customizable because the parameter is revealed at runtime
only.
These four optimization problems are instances of or involve
the solution of the constrained shortest path problem (CSP),
which is NP-hard in general and hence the existence of poly-
time algorithms is doubtful. Nevertheless we will present
techniques which guarantee optimal query answering in a
reasonable time span for real-world networks. This enables
users to plan their EV trips according to their preferences
and permits navigation of EVs in large street networks.

1.1 Related Work
Because of long recharging times and the limited cruising
range of EVs, the first approach for sensible route planning
was finding the path with minimal total energy-consumption.
Computing such an energy optimal path for an EV requires a
lot more effort than conventional route planning. On the one
hand the recuperation capability introduces negative edge
weights to the graph, as there might be a surplus of energy
on a certain road segment. This inhibits the direct appli-
ance of Dijkstra’s algorithm, which is the crucial ingredients
in most route planning applications. On the other hand the
EV must not run out of energy on the suggested path and
is also not allowed to overcharge the battery (when recu-
perating). The problem of finding a path that meets these
requirements (the battery constraints) while minimizing the
total energy consumption from source to target was intro-
duced in [3]. Here, the authors provided an extension of the
Bellman-Ford algorithm that solves the problem in O(nm)
(n being the number of nodes and m the number of edges).
In [4] proper cost models and preprocessing techniques were
introduced that reduce both the theoretical and practical
runtime of a query: First the constant edge costs represent-
ing energy consumption (e.g. in kWh) were transformed into
edge cost functions which fulfil the FIFO-property, hence
allowing straightforward use of Bellman-Ford. Then the
partly negative edge cost functions were transformed into
non-negative ones by using an adaption of Johnson’s shifting
technique. Upon that basis Dijkstra’s algorithm can be ap-
plied, leading to subsequent query times of O(n log(n)+m).
Finally the preprocessing technique contraction hierarchies
[5] was adapted to the scenario, leading to a total speed-up
of two orders of magnitude.

So very efficient retrieval of energy-optimal paths is possible
now. But the energy-consumption minimizing path might
not always be the desired route. Many owners of EVs can
recharge their EV in their garage; therefore driving home

after work, the goal is rather to get there as fast as possi-
ble than to maximize the battery load at the destination.
Accordingly the quickest or shortest path that is feasible is
more appropriate here. The techniques presented so far do
not guarantee anything in terms of travel time or distance.
Of course they also dealt with constraints, namely the bat-
tery constraints. But note that only one metric – energy
consumption – was involved up to now. So the constraints
and the objective were both concerned with the same met-
ric. In contrast, incorporating travel time or distances, a
second metric gets introduced to the problem and putting a
constraint on the one metric while minimizing the other, we
end up with instances of CSP. Therefore we can no longer
hope for a polytime algorithm like for the previously stud-
ied problem. Nevertheless in [6] it was shown that speed-up
techniques originally developed for the conventional shortest
path problem – like contraction hierarchies or arc-flags – can
be adapted to solve CSP, enabling practical query times for
graphs with up to a million nodes and edges. Note that for
conventional CSP instances both involved metrics are rep-
resented as constant costs along the edges. But using the
energy consumption edge cost functions from [4] as one of
the metrics, the setting gets more complicated and the tech-
niques presented in [6] can not be applied straightforward.

Also reloading decisions have to be taken into account. This
topic was already tackled in [7]. Here the authors aimed
for a path with a minimum number of necessary recharging
events. This problem can be solved in polytime because
besides feasibility nothing else is guaranteed for the resulting
path. The approach is reasonable under the precondition of
very time intensive reloading. But currently more and more
so-called battery switch stations get established. Here the
complete battery system is swapped for a fully loaded one,
taking considerably less time than recharging. Still having
to switch the battery is an inconvenience, but the user might
not accept arbitrary long detours anymore just to avoid this
process.

1.2 Contribution and Outline
For the first two problems – computing the shortest feasi-
ble path and the most energy-efficient one with bounded
distance – we present in Section 3 an adaption of contrac-
tion hierarchies for CSP which can also deal with edge cost
functions instead of constant values only. Moreover we take
loading stations into account and describe on that basis the
construction of an auxiliary graph, which helps to find the
optimal path efficiently. Upon that, in Section 4 we pro-
pose preprocessing techniques and algorithms, that solve
the more complex optimization problems 3. and 4. where
recharging is limited or minimized. Finally we evaluated
the proposed approaches on real-world data. The respective
experimental results can be found in Section 5.

2. PRELIMINARIES
Basically we are given the capacity of the EV’s battery M ∈
R+, a street (di)graph G(V,E), a cost function representing
distance or travel time d : E → R and a function fe on
each edge e ∈ E representing energy consumption. These
functions are modelled in consistency with [4] as follows:
Let c : E → R be the constant energy costs (in kWh),
which might be partly negative (due to recuperation). To
satisfy the battery constraints, it must be assured that no

overcharging and no running out of energy is possible. So
let e = (v, w) be some edge with constant cost c(e), and b(v)
the battery load of the EV at node v. If c(e) > 0 the battery
load b(v) might be insufficient to use the edge. To make sure
that no optimal path will contain e in such a case, we set
the respective edge costs to ∞ if c(e) > b(v). So for positive
constant costs the function looks as follows:

fe(b(v)) =

�
∞ b(v) < c(e)

c(e) otherwise

If c(e) < 0 the edge can always be used, but one must be
careful not to overcharge the battery, i.e. if b(v)− c(e) > M
the final load at w will still be M only. This can be achieved
using the following edge cost function:

fe(b(v)) =

�
c(e) b(v) < M + c(e)

b(v)−M otherwise

So a feasible path p = s, v1, · · · , vk, t from source s = v0 ∈ V
to target t = vk+1 ∈ V is characterized by b(vi) ∈ [0,M] for
all i = 0, · · · , k − 1.
In congruency with [7] we call a node w reachable from v
if there exists a feasible path p = v, · · · , w. The set of all
nodes reachable from v is denoted by R(v), the set of nodes
from which v can be reached by R−1(v). Nodes in the latter
set are also called inverse reachable from v. Both sets can
be computed efficiently as described in [7].

Label Setting: In the general CSP setting, there are con-
stant costs c : E → R+ and constant resource consumptions
r : E → R+. Moreover on query time, we are given a source/
target s, t ∈ V as well as a bound B ∈ R+ on the resource
consumption. The goal is to find the path from s to t which
minimizes the costs while not exceeding the resource bound
B. One classical approach to solve instances of CSP is the
label setting computation (LSC) [1]. A LSC assigns to each
node v the list of all pareto-optimal tuples (c(p), r(p)) for
an s-v-path p. Pareto-optimal means that there is no dom-
inating path p� with c(p�) ≤ c(p) and r(p�) ≤ r(p) (and
inequality holds at least once). These labels are created by
an approach very similar to Dijkstra’s algorithm for com-
puting plain shortest paths. Here also labels are stored
in a priority queue (PQ). A label is a triple consisting of
a node ID, cost and resource consumption. The PQ sorts
the labels in the increasing order of costs. The initial PQ
contains only the label (s, 0, 0). In every round the label
(v, c, r) with minimal cost c is extracted and for the respec-
tive node v all outgoing edges e = (v, w) become relaxed,
i.e. if (c� = c + c(e), r� = r + r(e)) is pareto-optimal for w
the new label (w, c�, r�) gets pushed into the PQ. If (c�, r�)
dominates any solution that was already assigned to w the
dominated solution gets pruned.

Simple Pruning: The number of labels that can be as-
signed to a single node is exponential and so is the runtime
of LSC. Therefore pruning the search space is of utmost im-
portance to achieve practical runtimes in larger graphs. A
simple attempt to reduce the graph size is based on minimal
resource labels [2]. Here the minimal resource label rmin

of a node v is the minimal resource consumption of an s-t-
path that visits v. Obviously, all nodes with rmin(v) > B
can never be on a feasible path, and hence these nodes as
well as their adjacent edges can be excluded a priori. This

condition can be checked efficiently for all nodes by running
two conventional Dijkstra computations on the resource con-
sumption starting in s, and t (on the reversed graph). After-
wards the two resulting labels rs(v) and rt(v) are summed
for each node to receive rmin(v).

Contraction Hierarchies: The speed-up technique con-
traction hierarchies (CH) was introduced in [5]. The basic
idea is augmenting the graph with shortcuts that allow to
skip a lot of edge relaxations at query time.
To that end, in a preprocessing phase an importance value
is assigned to each node, and nodes are sorted in increasing
order of importance. Afterwards the nodes get removed/
contracted one by one in that order, while preserving all
shortest path distances in the remaining graph by inserting
additional edges (so called shortcuts). More precisely, when
contracting a node v for every path u, v, w the distance from
u to w must stay unchanged. Therefore the edge e = (u,w)
has to be added if the only shortest path from u to w is
u, v, w. The cost of e equals the chained costs of the edges
(u, v) and (v, w). If there exists a path with costs less than
the ones of u, v, w, a so called witness path is found (nor-
mally via a Dijkstra run from u to w) and the shortcut can
be omitted. After all nodes have been removed, a new graph
G� is created consisting of all nodes and edges of the origi-
nal graph and all shortcuts. An edge e = (v, w) (original or
shortcut) is called upwards if the importance of v is smaller
than that of w and downwards otherwise. In G� s-t-queries
can be answered bidirectionally, with the forward run (start-
ing at s) considering only upward edges and the backward
run (starting at t) considering exclusively downward edges.
Therefore this strategy prunes the respective search spaces
dramatically. If unidirectional query answering is necessary,
all edges on downward paths ending in t can be marked via a
run of breadth-first-search and the forward run from s con-
sidering edges on upwards paths and the marked edges will
provide the optimal solution.

In [4] the technique was adapted to the energy consumption
functions. Here one must assure that all energy-optimal
paths are maintained during the contraction process. In
particular this means, that for every possible battery load
b(u) ∈ [0,M] the optimal path to w is not allowed to visit
v in order to omit the shortcut. A CH-variant for CSP was
introduced in [6]. In this scenario a witness path must domi-
nate the reference path u, v, w in order to make the shortcut
(u,w) superfluous.
In the following we will describe how these two approaches
can be plugged together to solve our CSP instances with
energy consumption functions as costs or resource consump-
tions.

3. SHORT & ENERGY-EFFICIENT PATHS
Energy-optimal Paths with Bounded Distance: Even
very eco-friendly EV owners might not accept driving a route
three times as long as the respective shortest path in order to
save energy. But most likely they would be willing to drive
a detour of e.g. 10% of the shortest path distance. Hence
in a realistic setting we search for a route which obeys the
battery constraints, but is not longer than some given dis-
tance bound B.
So we are confronted with an instance of CSP, where the
costs are given by a function representing the energy con-

sumption, the resource usage is equivalent to the edge length,
and the resource bound is given by B = x ·π(s, t) with x ≥ 1
being chosen by the user and π(s, t) being the shortest path
distance. Hence a LSC will assign tuples (c(p), r(p) = d(p))
to the nodes consisting of summed costs and distances. Note
that the summed costs equal the difference between initial
and actual battery charge status, therefore we could also as-
sign tuples (b, d(p)), where the summed costs are replaced
with the actual battery load. Here of course the tuple dom-
inates (b�, d�(p)), if b ≥ b� and d(p) ≤ d�(p).
Simple pruning can be performed conventionally in this case
by running two Dijkstra computations starting at s and t re-
spectively and considering only the distance values.
To speed up the LSC via CH, we first have to clarify how
a witness is characterized in this scenario. Of course we
can only omit a shortcut (u,w) for a path p = u, v, w if
for any initial battery load b(u) = I ∈ [0,M] there exists
an alternative path which is not longer than p and leads to
at least the same final battery load in w as p. Observe that
equivalent to the CH construction for unconstrained energy-
optimal paths, there is no necessity that this is the same path
for every I. Therefore a witness can be described as set of
paths q1, · · · , qt with min(fq1 , · · · , fqk) ≤ fp (f being the
chained energy consumption function of all path edges) and
d(qi) ≤ d(p) ∀i = 1, · · · , k. To perform the witness search
efficiently we choose a set of initial battery loads I1, · · · like
in [4] but start a LSC with resource bound d(p) instead of a
simple Dijkstra computation for every b(u) = I.

Shortest/Quickest Feasible Paths: If the objective is
reaching the destination as fast as possible without running
out of energy, no additional parameter is required to deter-
mine the resource bound. Instead the bound is always given
implicitly by the battery capacity M . In this scenario the
costs are constant values (distance or travel time) while the
resource consumption is described by the energy consump-
tion function. Accordingly the simple pruning technique has
to be adapted. Here we first compute R(s) and R−1(t) and
store the respective battery loads b and bmin for all contained
nodes. All nodes v ∈ V with b(v) < bmin(v) are not part
of any feasible path from s to t and hence can be ignored
completely (this is especially true for v /∈ R(s) ∩R−1(t)).
Observe that the CH-graph can be obtained just like de-
scribed in the last section (or reused), because the definition
for a witness proposed there is still valid in this scenario.

Regarding Loading Stations: The presence of loading
stations might affect the shortest feasible route or might be
the basis for the existence of a feasible path at all. A LS is
a node v ∈ V at which the EV completely recharges when-
ever it visits. The set of LSs is denoted by L ⊆ V . To
incorporate LSs efficiently, we make the following observa-
tions: Firstly an optimal path visits at most |L| (all) LSs
once, because any cycle starting and ending at a LS would
increase the distance, but could not lead to a higher battery
charge status at that vertex. Secondly the pairwise shortest
feasible paths between LSs are not influenced by the choice
of s and t; therefore those paths can be preprocessed. These
two observations give rise to the construction of an auxiliary
graph similar to the one proposed in [7]. Here we create a
node for every loading station l ∈ L and edges (l, l�), if
there exists a feasible path from l to l� (without the usage of
any further LSs). In contrast to the approach described in

[7], we now weigh the edges with the shortest feasible path
distance (we refer to this graph also as reach graph). At
query time we have to add the nodes s and t and proper
edges. For this purpose we first compute R(s) and R−1(t)
and intersect these sets with L to derive the directly (in-
verse) reachable LSs. For every l ∈ R(s) ∩ L we have to
compute the shortest feasible path from s to l. Of course
this can be achieved simultaneously for all of the concerned
LSs via a single LSC. The same yields for t reversely. After
adding the edges (s, l), l ∈ R(s) ∩ L and (l, t), l ∈ R−1(t)
to the auxiliary graph, a single Dijkstra run from vs to vt
returns the desired sequence of LSs on the shortest feasible
path from s to t.

To benefit from applying CH when computing R(s) and
R−1(t) we leave all LS nodes uncontracted. Therefore they
all lay on upward paths from s and downward paths to t,
i.e. exploring the respective graphs is sufficient to determine
the set of (inverse) reachable LSs. Moreover this speeds up
the computation of the auxiliary graph, because the shortest
feasible distances from one LS to all the others can be com-
puted in the remaining (much smaller) graph with a plain
LSC.

Naturally such a route might contain a large number of
recharging events, because a fully loaded battery might al-
low for driving a much shorter/quicker tour than a heavily
discharged one. In case of minimizing travel time, we can
find a more reasonable path by considering also the time
needed for the recharging event. These ’penalty times’ have
to be added to all edges in the auxiliary graph which end in
a LS. Then again a single run of Dijkstra’s algorithm leads
to the optimal sequence of LSs, see Figure 2 for a small
example.

s t
v1 v2

20 4

118(+3)

2(+3)

6(+3)

5(+3)

Figure 2: Computing the quickest feasible path in
the presence of loading stations. If no penalty times
for visiting a LS are assigned, the optimal path (or-
ange, c = 11) includes two recharging events. If
penalty times are added (values in brackets, here
3 units for each LS), the new optimal path (green,
c = 12 + 3) requires recharging only once.

4. CONTROLLING THE NUMBER
OF RECHARGING EVENTS

In the last section we showed how one can incorporate penalty
times for recharging events in order to keep their number
small on quickest feasible paths. But it is difficult to esti-
mate the penalty times reasonably, as they actually include
possibly waiting times, time to install the new battery (if it
is completely switched, otherwise time to recharge), time to
pay and so on. Moreover if distance is minimized instead
of travel time, the optimal path still might include a lot of
recharging events. Therefore we will now present two ways
to control the number of recharging events without accept-
ing long detours.

s t

R(s) ∩ L R−1(t) ∩ LL L L

· · ·

k ≤ |L|

· · · Figure 3: Layered graph to find the shortest feasi-
ble path from s to t visiting with at most k loading
stations. Each node has an edge to every node in
the next layer (black) – apart from edges that indi-
cate the visit of the same LS consecutively. Nodes
in R−1(t) ∩ L have an additional edge to t (blue).
Edges are weighted according to the shortest fea-
sible path distance in G neglecting LSs (∞ if no
feasible path exists).

Limiting Recharging Events: While the natural limit
of recharging events is |L|, a driver is normally only will-
ing to accept a few recharging events, e.g. one for small
tours and three for longer tours. Therefore we would like to
compute the shortest feasible path that requires at most k
recharging events. For that purpose we turn the auxiliary
reach-graph proposed in the last section into a layered graph
as depicted in Figure 3. The main and invariant part of the
graph consists of |L| layers each containing a vertex vl for
every loading station l ∈ L. We call i(vl) ∈ {1, · · · , |L|} the
layer index of vl. Between sequent layers j and j + 1, there
exist all edges (vl, vl�) l �= l� with i(vl) = j and i(vl�) = j+1.
Edges are weighted according to the shortest feasible path
distance that can be achieved from l to l� in G without using
any other LS. To answer an s-t-query we have to augment
the layered graph as well. We insert vs into the layered
graph at layer 0 and connect it to the first layer by adding
edges (vs, vl)∀l ∈ R(s) ∩ L, i(vl) = 1 with the precomputed
distances. Then we insert vt at layer |L| + 1. To enable
paths with an arbitrary number of LSs, we have to connect
every layer to t. Hence we add edges (vl, vt) to the layered
graph with l ∈ R−1(t) and i(vl) = 1, · · · , |L|. For a given
bound k on the number of recharging events, we only con-
nect the layers 1, · · · , k to t or ignore all layers with an index
of k + 1 or higher. In the resulting graph a plain Dijkstra
computation reveals the optimal path.

Minimizing the Number of Recharging Events under
a Distance Constraint: A user could also be interested to
input a limit on the path length and ask for the path with
a minimum number of recharging events and the length not
exceeding the given limit. For this purpose we could use the
same layered graph as for finding the shortest feasible path
regarding LSs, but now let the distances be the resource
consumption and the actual costs are 1 for all edges not ad-
jacent to t and 0 otherwise, see Figure 4 (left) for a small
example. A LSC from s to t in the layered graph with the
given distance limit answers the query. But as the layered
graph is a DAG (directed and acyclic) and the resource con-
sumption for all nodes except t is equivalent to the node’s
layer index, the LSC will assign only one pareto-optimal tu-
ple to every node except t, namely the index combined with
the shortest path distance from s to the node in the lay-
ered graph. Accordingly there will be at most |L|+1 tuples
assigned to t as there are only |L| + 1 different cost values
possible. The labels for v ∈ V \ {t} could also be obtained
by computing the shortest path distances for all nodes in the
original layered graph without considering edges adjacent to
t. As this graph is also a DAG the distance labels are com-
puted layerwise. For the first layer this requires time O(|L|)
as there are only |L| incoming edges, for every subsequent
layer we need time O(|L|2). As soon as the distance label of

a node v is settled, we relax the edge (v, t) (if it exists). If we
assign a distance label to t that does not exceed the limit,
we are done and the minimal number of recharging events
kmin equals the layer index i(v). Accordingly the runtime
of this approach is in O(kmin|L|2) (excluding the runtime
for creating the graph with edges from/to s/t). Of course,
we could also retrieve the set of all pareto-optimal solutions
for t by storing the tuples (i(v), d(v) + c(v, t)) in a list and
pruning dominated ones (see Figure 4, right). Because the
nodes get parsed in layer order we only have to compare a
new tuple to the tail of the list to decide whether one of
them needs to be pruned. Hence we need |L| comparisons
and the overall runtime is O(|L|3).

Observe that if for all nodes v in layer j ≥ 1 the tuple
(j, d(v)+c(v, t)) is not pareto-optimal for t, then for all nodes
w in a layer with an index j� ≥ j the tuple (j�, d(w)+c(w, t))
is not pareto-optimal for t as well. Accordingly we can abort
the search for pareto-optimal labels for t as soon as we derive
no pareto-optimal solution from a certain layer. While this
does of course not change the theoretical runtime, it might
save a lot of time in practice.

5. EXPERIMENTAL RESULTS
We implemented the described approaches in C++ and eval-
uated their performance on three test graphs, considering
varying cruising ranges (CR) and number of loading stations
(where taken into account). The test graphs are cutouts of
the street network of Germany and based on OpenStreetMap
data: Winnenden (W) with 500011 nodes and 1074458 edges,
Baden-Württemberg (B) with 999591 nodes and 2131490
edges, and Southern Germany (S) with 5588146 nodes and
11711088 edges. All timings (t) were taken on a single core of
an Intel i3-2310M processor with 2.1 GHz and 8 GB RAM.
First we computed quickest feasible paths. Without any
preprocessing the LSC takes several seconds and about 5M
priority queue polls in Southern German (see the third and
fouth column of Table 1).The CH only adds about 1-1.6

CR LSC CH CH-LSC
(km) polls t(ms) t(s) edges polls t(ms)

W 25 1.7·104 13 357 2.1·106 148 3
250 9.1·105 433 42 1.9·106 1316 3

B 25 3.7·104 15 373 4.1·106 290 4
250 1.2·106 681 111 3.9·106 1576 3

S 25 1.2·106 932 8278 3.1·107 435 17
250 5.2·106 3900 1935 2.7·107 8157 11

Table 1: Experimental results for CH-construction
and computation of quickest feasible paths (aver-
aged over 1000 random queries).

s
t

v1

v2

v3

v4

s

v1

v2

v3

v4

(0,25) (0,4)

(0,12)

(0,12)

(0,4)(1,6)

(1,5)

(1,10)

(1,3)

10

3
5

6

v l(v) d(v) c(v, t) labels(t)
s 0 0 25 (0,25)
v1 1 10 4 (1,14)
v2 1 3 12 (1,15)
v3 2 8 4 (2,12)
v4 2 16 12 (2,28)

Figure 4: Example for finding the path with a minimum
number of recharging events under a distance constraint.
On the left the augmented layered graph is given on which
a label setting computation will output the optimal path.
On the right an alternative approach is presented: First
the shortest path distances of all nodes v ∈ {s, v1, v2, v3, v4}
are computed in the diminished layered graph. Then all
possible pareto-optimal labels for t are derived by parsing
through the nodes in layer order and combine their layer
index with the minimal distance from s to t over v. Domi-
nated tuples get pruned (crossed out in the table).

CR reach-graph query reach avg/max
LS (km) t(s) edges t(s) able # reload

W 10 50 2 38 0.027 0.83 0.54/2
10 125 6 72 0.069 0.98 0.00/0

B 10 50 3 26 0.038 0.54 0.41/3
10 125 8 65 0.092 0.95 0.17/1
100 50 22 2360 0.035 1.00 1.46/4

S 10 125 58 32 0.747 0.58 0.55/2
10 150 88 34 0.963 0.80 0.30/2
100 50 69 679 0.128 0.58 3.20/9
100 125 618 3114 0.834 1.00 1.12/5
100 150 985 4528 1.150 1.00 0.86/4
1000 100 3101 249785 0.539 0.96 1.54/5

Table 2: Experimental results for computing quick-
est feasible paths regarding loading stations (aver-
aged over 10 randomly chosen sets of LS and 100
subsequent random queries each). ’reachable’ de-
notes the fraction of targets to which a feasible path
from the source (via LSs) existed.

times the number of original edges as shortcuts to the graph
(see the total number of original + shortcut edges in column
6) which is comparable to the conventional case for short-
est paths. Note that a small cruising range leads to more
shortcut insertions, because a greater diversity of paths is
optimal for different battery charge levels. Therefore – and
because the runtime for pure LSC correlates with the CR –
the speed-up for the 25km range is only about 4-55, while
for 250km we get up to a factor of 354. Incorporating LSs
increases the runtime, because more of the cruising range
has to be explored to find all (inverse) reachable LS from s
(from t) and the Dijkstra run on the auxiliary (reach-)graph
takes additional time, see Table 2. Nevertheless we still end
up with practical runtimes about a second on maximum.
Moreover we observed that the average number of reloading
events seems to be acceptable for the considered scenarios,
while the maximum number indicates that our approach also
outputs some unreasonable routes (see the last column of
Table 2). Adding reloading penalties reduces both values of
course, but choosing them in a realistic fashion there a still
optimal routes no user would be willing to take. Therefore
we performed experiments with a limit of k = 2 and k = 3
on the number of recharging events in Southern Germany.
Unsurprisingly we got comparable query times, because the
layered graph is only about k times as large as the original
reach-graph. Comparing the pure shortest feasible routes to
the ones with the recharging limit, we saw that the ratio
of reachable targets remains almost unchanged (reduction
by only 4% for k = 2) and the average travel time (with-
out reloading time) increases slightly by about 3− 10%. So
taking reloading effort into account leads to more practical
routes in some cases.

Similar results were obtained for minimizing the number of
recharging events under a distance constraint: Setting the
bound to 1.05 times the shortest feasible path distance we
could already save 1-2 recharging events on average, result-
ing in much more useful EV routes.

6. CONCLUDING REMARKS
In this paper we showed that the speed-up technique con-
traction hierarchies works for constrained shortest paths even
if one of the metrics is represented by a function instead of
a constant value. This allows for answering EV route plan-
ning queries, like computing the shortest path on which the
EV does not run out of energy, efficiently. Moreover we pro-
posed preprocessing approaches for incorporating reloading
decisions, allowing for minimizing recharging under a dis-
tant constraint or limiting the number of such events. Partly
our algorithms are customizable, i.e. the user can trade be-
tween eco-friendly and short routes with an input parameter.
All our approaches guarantee optimality and were proven to
work well on real-world instances. Future work includes con-
sideration of incomplete reloading and dynamic changes in
the energy consumption function, e.g. due to traffic volume,
trunk load or weather conditions.

7. REFERENCES
[1] V. Aggarwal, Y. Aneja, and K. Nair. Minimal spanning

tree subject to a side constraint. In 32nd ACM
Symposium on Theory of Computing (STOC), pages
286–295, 1982.

[2] Y. P. Aneja, V. Aggarwal, and K. P. K. Nair. Shortest
chain subject to side constraints. Networks,
13(2):295–302, 1983.

[3] Andreas Artmeier, Julian Haselmayr, Martin Leucker,
and Martin Sachenbacher. The shortest path problem
revisited: Optimal routing for electric vehicles. In 33rd
Annual German Conference on Artificial Intelligence
(KI-2010), 2010.

[4] Jochen Eisner, Stefan Funke, and Sabine Storandt.
Optimal route planning for electric vehicles in large
networks. In AAAI, 2011.

[5] Robert Geisberger, Peter Sanders, Dominik Schultes,
and Christian Vetter. Exact routing in large road
networks using contraction hierarchies. Transportation
Science, 46(3):388–404, 2012.

[6] Sabine Storandt. Route planning for bicycles - exact
constrained shortest paths made practical via
contraction hierarchy. In ICAPS, 2012.

[7] Sabine Storandt and Stefan Funke. Cruising with a
battery-powered vehicle and not getting stranded. In
AAAI, 2012.

