
Open Information Extraction via Contextual Sentence Decomposition1

Hannah Bast, Elmar Haussmann

Department of Computer Science

University of Freiburg

79110 Freiburg, Germany

{bast,haussmann}@informatik.uni-freiburg.de

Abstract—We show how contextual sentence decomposition
(CSD), a technique originally developed for high-precision
semantic search, can be used for open information extraction
(OIE). Intuitively, CSD decomposes a sentence into the parts
that semantically “belong together”. By identifying the (implicit
or explicit) verb in each such part, we obtain facts like in
OIE. We compare our system, called CSD-IE, to three state-
of-the-art OIE systems: ReVerb, OLLIE, and ClausIE. We
consider the following aspects: accuracy (does the extracted
triple express a meaningful fact, which is also expressed in
the original sentence), minimality (can the extracted triple be
further decomposed into smaller meaningful triples), coverage
(percentage of text contained in at least one extracted triple),
and number of facts extracted. We show how CSD-IE clearly
outperforms ReVerb and OLLIE in terms of coverage and
recall, but at comparable accuracy and minimality, and how
CSD-IE achieves precision and recall comparable to ClausIE,
but at significantly better minimality.1

Keywords-open information extraction; contextual sentence
decomposition; semantic search;

I. INTRODUCTION

Information extraction (IE) is the task of automatically

extracting relational tuples from natural language text. Such

relational tuples typically take the form subject predicate

object (SPO), for example: (Ruth Gabriel) (was born) (in

San Fernando). In early IE systems, the desired relations

(predicates) were part of the input, for example born in.

Such a system was then typically given, for each such

relation, a set of correct triples from which it could learn. In

recent years, the trend has been towards open information

extraction (OIE), where identifying the predicate and hence

the relation is part of the problem [1]. Many systems for

OIE have been developed in recent years; we describe the

most recent ones in Section II.

A classical use case for information extraction is to obtain

fact triples for a formal ontology. This use case requires that

the S, P, and O parts are disambiguated, that is, different

formulations referring to the same entity are mapped to the

same identifier. For example, the S part of the triple above

should be mapped to the actress Ruth Gabriel, regardless

of whether in that part she is referred to as Ruth Gabriel

(like above), R. Gabriel, Gabriel, or she (assuming, of

1An extended version of the paper is available via the authors’ website:
http://ad.informatik.uni-freiburg.de/publications.

course, that all these references actually mean her). In OIE,

this disambiguation is typically not considered part of the

problem. More than that, many facts extracted by traditional

OIE systems are not easily disambiguated, because the S and

O part often contain references to more than one entity. We

come back to this important aspect below, when we discuss

the aspect of minimality of a triple.

The motivation for our approach comes from an appli-

cation called semantic full-text search (SFTS) [2]. SFTS

combines formal ontology search with classical full-text

search. A typical query would be class:person word:writer,

searching for co-occurrences of a reference to a person with

the word writer. The intention of the query is to find people

who are writers. For results of good quality, it is crucial that

the two occurrences (or more for a longer query), actually

“belong together” semantically. For example, consider the

following sentence, which will be our running example

throughout the paper:

(S): Ruth Gabriel, daughter of the actress and writer Ana

Maria Bueno, was born in San Fernando.

The sentence contains two references to a person, Ruth

Gabriel and Ana Maria Bueno, as well as the word writer.

However, only the fact that Ana Maria Bueno is a writer

is supported by the sentence. Returning Ruth Gabriel as

a hit for the query above would be a mistake. In [2],

we therefore proposed contextual sentence decomposition

(CSD). The goal of CSD is to compute, for a given sentence,

all sub-sequences of words in that sentence that semantically

“belong together”. The sub-sequences are then called the

contexts of the sentence. A correct decomposition of the

sentence above would yield the following four contexts (in

any order):

#1: Ruth Gabriel was born in San Fernando

#2: Ruth Gabriel, daughter of Ana Maria Bueno

#3: actress Ana Maria Bueno

#4: writer Ana Maria Bueno

Note that not splitting actress and writer Ana Maria Bueno

into #3 and #4 would be considered a mistake in CSD, be-

cause the words actress and writer do not “belong together”

semantically. Rather, in this sentence, they are two unrelated

attributes related to the same person.



In this paper we explore the use of CSD for OIE. In fact,

the contexts above already look close to the kind of triples

expected from an OIE system. All that is missing is the

distinction into the subject, predicate, and object part. Since

CSD is computed from a full parse of the sentence, with

explicit markup denoting the verb phrases, this is relatively

straightforward. Also note that some of the contexts above

are missing a verb. In that case the verb is implicit, but can

(typically) be easily deduced from the context, e.g. is for

contexts #3 and #4 (noun phrase with pre-modifying noun

phrase). Our system, called CSD-IE is described in detail in

Section III.

A. Quality Aspects

In this paper, we evaluate OIE systems with respect to the

following three quality aspects.

1. The accuracy of the extracted facts. Two aspects

are important here. First, whether the fact actually has the

form of a meaningful relational triple. For example, the triple

(Ruth) (Gabriel was) (San Fernando) would be considered

inaccurate for two reasons: (1) the P part contains words

which do not belong to the verb (but to the S part in this

case), and (2) the P and the O parts do not fit together.

Second, what is expressed by the triple should also be

expressed by the sentence. For example, (Ruth Gabriel) (is)

(actress) would be accurate according to the criterion just

mentioned, but it’s not expressed in our sentence (S) above.

Accuracy is typically assessed by human judges, see

Section IV. The percentage of the extracted facts deemed

accurate is typically referred to as the precision.

2. The number of extracted facts. An average sentence

may express a lot of facts. For example, our example

sentence from above expresses four facts:

#1: (Ruth Gabriel) (was born) (in San Fernando)

#2: (Ruth Gabriel) (is) (daughter of Ana Maria Bueno)

#3: (Ana Maria Bueno) (is) (actress)

#4: (Ana Maria Bueno) (is) (writer)

It is the explicit goal of our system to extract, from a

given sentence, as many facts as possible, and lose as little

information as possible. In Section IV we measure this by

the coverage, that is, the percentage of all word occurrences

that occur in at least one extracted triple. For the sentence

above, the coverage is 100%.

3. The minimality of the extracted facts. An accurate

fact may itself contain other (accurate) facts. For example,

(Ruth Gabriel) (is) (daughter of the actress and writer Ana

Maria Bueno) would be considered an accurate fact accord-

ing to our definition above. However, we already explained

above that this fact contains two other facts (namely, that

Ana Maria Bueno is an actress and a writer), which are

unrelated to the containing fact and that this mixture of

unrelated facts is problematic for applications that require

“semantic togetherness” of the words in a fact. It is therefore

another explicit goal of our system to extract minimal facts.

The four facts listed under 2. above are all minimal.

The goal of minimality comes with a challenge that is not

apparent in our example sentences, but occurs in sentences

of a more complex type. For example, consider the sentence:

The Embassy said that 6,700 Americans were in Pakistan.

This sentence contains two facts: that the Embassy made

some statement, and that 6,700 Americans were in Pakistan.

However, by simply extracting these two facts, we would

lose the information what statement the Embassy made. We

solve this by allowing the S and O part of a fact to contain

references to other extracted facts. In this case, we would

extract:

#1: (The Embassy) (said) (that #2)

#2: (6,700 Americans) (were) (in Pakistan.)

where the numbers are simply unique ids for each extracted

triple. That way, no information is lost, and the application

may choose to either keep the facts separate (and avoid

mixing of facts) or substitute the references with the referred

fact (and thus obtain output as in other OIE systems). A

similar issue was addressed by OLLIE [3] using what they

call additional context information; see Section II.

B. Our contribution

We present a new system for open information extraction,

called CSD-IE, that is good in all three aspects above. We

compare our approach to what we consider the three best

previous approaches: ReVerb, OLLIE, and ClausIE. CSD-

IE outperforms ReVerb and OLLIE in terms of coverage

and recall, but at comparable precision and minimality. It

also achieves precision and recall comparable to ClausIE,

but at significantly better minimality. For some details about

previous systems and how they relate to our approach see the

next Section II. The details behind our CSD-IE are described

in Section III. Our evaluation is provided in Section IV.

II. RELATED WORK

A large variety of OIE systems have been developed in

recent years, starting with the original TextRunner [1], over

WOE [4], R2A2 [5], ReVerb [6], OLLIE [3], to the very

recent ClausIE [7]. A good and up-to-date overview over

these and other systems is provided in [7]. In the following

we will shortly describe how our strongest competitors

(ReVerb, OLLIE, and ClausIE) relate to our approach.

ReVerb explicitly addressed the issues of incoherent ex-

tractions and uninformative extractions. Using shallow NLP

and learned extraction patterns ReVerb achieves a signifi-

cantly better precision than its predecessors. Our approach

utilizes a full parse which helps with these problems; see the

description of ClausIE below and our description of CSD-IE

in Section III.



OLLIE improves over ReVerb by addressing two further

issues important for extraction quality. The first issue are

facts not mediated by verbs. The second issue is additional

information about facts expressed in indirect speech (He said

that ...) and the like. OLLIE relies on a dependency parse

and achieves significantly better recall than ReVerb with

basically the same good precision. Our contextual sentence

decomposition deals with these issues by allowing triples to

contain references to other triples and explicitly considering

facts not mediated by verbs. This has the advantage of

simultaneously addressing the issue of information loss and

of minimality.

ClausIE is the most recent OIE system, and our strongest

competitor. In fact, the basic approach of ClausIE is very

similar to ours: decompose each sentence into its basic

constituents (called “clauses” in ClausIE), and from those

constituents derive triples. Our approach has been devel-

oped in independent work and the basic ideas behind our

contextual sentence decomposition (CSD), as used for our

semantic search, have already been published in [8] and [2],

long before [7]. Still, there are some important differences

between our CSD-IE and ClausIE.

First and foremost, we make minimality a primary goal

of our system. This was motivated by our application to

semantic full-text search. However, minimality is also im-

portant for the more universal task of transforming the OIE

triples into disambiguated facts within a formal ontology.

Second, we provide a more principled description of how

we obtain our sentence constituents, by first transforming the

(fine-grained) parse tree into a (coarse-grained) constituent

tree, and then treating that tree like an expression tree (with

different operators) to obtain what we call our contexts

(from which we then derive our triples). In particular, the

second step is tricky when relative clauses are nested in

enumerations or vice versa. This aspect is not addressed in

the description of [7, Section 4.2].

III. CSD AND CSD-IE

We describe our system CSD-IE. The main idea behind

CSD-IE is contextual sentence decomposition (CSD). CSD

is performed in two steps. First, basic building blocks

of our contexts are identified in the sentence constituent

identification (SCI) phase. A tree expressing the semantics

is derived. In the second step, sentence constituent recom-

bination (SCR), the tree constituents are combined to form

our contexts. To derive triples from resulting contexts we

introduce a (relatively trivial) third phase. Throughout this

section we use the running sentence (S) from Section I.

The next sub-sections define the conceptual ideas of SCI

and SCR. We describe an implementation of SCI based on

constituent parse trees in section III-C. The triple generation

phase is described in section III-D.

A. Sentence Constituent Identification

The task of SCI is to identify the basic “building blocks”

of our contexts in a sentence and arrange them in a tree. It

turns out that, for our purposes, mainly relative clauses and

what we call enumeration items are important, because they

usually contain separate facts that have no direct relationship

to the other parts of the sentence. In our sentence (S) from

above, the (reduced) relative clause daughter of the actress

and writer Ana Maria Bueno refers to Ruth Gabriel but has

nothing to do with the rest of the sentence. Furthermore,

the relative clause contains the nominal (pre-)modifier the

actress and writer modifying Ana Maria Bueno, which

we consider to be another type of relative clause. The

nominal modifier itself contains an enumeration of two

coordinated enumeration items: the actress and writer. These

have nothing to do with each other, except that they both

refer to Ana Maria Bueno.

More specifically now, SCI computes a tree with the follow-

ing types of nodes:

ENUM: an enumeration. Each child corresponds to an

enumeration item and belongs to a different context.

CONC: a group of child-nodes (constituents) that belong to

the same context.

REL: a relative clause with a link to its head (the noun

phrase or clause it closer describes).

SUB: a clause or sub-sequence corresponding to a self-

sufficient context, e.g., a prepositional phrase describing a

complex circumstance representing some fact on its own.

LEAF: a leaf that contains words (terminals) of the sentence.

Nodes can be nested in an arbitrary fashion and arbitrarily

deep. Figure 1 depicts an SCI tree of our example sentence.

CONC 

ENUM 

Ruth Gabriel 

the actress writer 

REL 

ENUM 

daughter of Ana Maria Bueno 

REL 

was born in 

and 

San Ferando 

CONC 

CONC 

Figure 1. The SCI tree for our example sentence (S). The head of each
relative clause is printed in bold, filler words in striped rectangles.

B. Sentence Constituent Recombination

The SCR phase recombines the constituents identified by

the SCI phase to form the final contexts. SCR recursively

computes contexts from an SCI tree or subtree as follows:



(SCR 0) Take out each subtree labeled REL or SUB and

change the root of this new tree to CONC. For REL, add

the head as the leftmost child (but leave it in the SCI tree,

too). For SUB, leave a reference to the newly created tree

in the original tree. This is the only place references to

other contexts need to be considered. Then process each

such subtree and the remaining part of the original SCI tree

(each of which then only has ENUM and CONC nodes left)

separately as follows:

(SCR 1) For a leaf, there is exactly one context: the part of

the sentence stored in that leaf.

(SCR 2a) For an inner node, first recursively compute the

set of contexts for each of its children.

(SCR 2b) If the node is marked ENUM, the set of contexts

for this node is computed as the union of the sets of contexts

of the children.

(SCR 2c) If the node is marked CONC, the set of contexts

for this node is computed as the cross-product of the sets of

contexts of the children.

Applying these rules to the SCI tree in Figure 1 yields the

desired contexts shown in section I:

In a final step we generate triples from the extracted

contexts, see Section III-D. We note that, given the SCI

tree and the definition above, SCR is straightforward and

fully defined. Therefore, the challenging part of CSD is

computing the SCI tree.

C. Sentence Constituent Identification Based on Deep Parse

Trees

We present an approach to SCI that is based on the output

of a state-of-the-art constituent parser. Figure 2 depicts the

parse tree for our example sentence (S).

S 

Ruth Gabriel 

NP NP 

PP 

VP 

was born 

NP 

in 
NP 

daughter 
NP 

NP NP 

of 

NP 

the actress writer 

and NP Ana Maria 

Bueno 

PP 

San Ferando 

, 

NP 

Figure 2. Constituent parse tree for our example sentence. For the sake
of readability, the parse tree has been simplified.

We manually created a small set of rules with which we

can derive an SCI tree from a parse tree. In the following

description when we speak of, for example, an NP (noun

phrase) we refer to nodes in the parse tree with that tag.

(SCI 1) Mark as ENUM each node, for which the children

are all of the same type (e.g. all VP), but interleaved

by punctuation or conjunctive constructions. (This avoids

splitting objects of di- and complex-transitive verbs).

(SCI 2a) If the sequence consist of only two NPs split by

a comma (and not some conjunction) this is an apposition.

Mark the second NP as REL and the first NP as its head.

(SCI 2b) Mark as REL each SBAR and PP, if it starts with

a phrase in WHPP, WHADV, WHNP or with a word from a

positive-list (e.g., such as or who) but not with one from

a negative-list indicating temporal relations (e.g., before,

when).

(SCI 2c) Mark as REL each PRN contained in round

brackets ”(”, ”)”.

(SCI 2d) Mark as REL each S that is preceded by an NP

followed by a comma.

(SCI 2e) Mark as REL each VP that is preceded by a

comma, if it has not previously been marked as part of an

enumeration and starts with a word with part-of-speech tag

of VBN, VBG or VBD. The verb can optionally be preceded

by an adverbial phrase ADVP.

(SCI 2f) Mark as REL each VP below a WHNP or NP,

starting with a word with a part-of-speech tag of VBN,

VBG, or VBD. These are participial clauses acting as relative

clauses.

(SCI 2g) For all REL from above define the closest left

sibling NP as the head. If there is no left sibling NP move

down towards the leaves and use the closest first NP to the

left as head (low/local attachment).

(SCI 3) Mark as REL each NP, which has an NP as parent

and which has exactly one right sibling NP. This NP is pre-

modifying the right sibling NP. Mark the right sibling NP

as head.

(SCI 4) Mark as REL each NP, which has as a first (or

last) word with part-of-speech tag PRP$. This indicates a

possessive relation. Mark the last (or first) part of the NP as

head. If the NP also has a right sibling mark it as additional

head.

(SCI 5a) Mark as SUB each PP starting with a preposition

from a positive-list of temporal indicators (e.g., before or

while), each PP enclosed in commas and all PPs at the

beginning of a sentence. These often describe circumstances

of events and should be considered separately.

(SCI 5b) Mark as SUB each SBAR if it is not already marked

REL.

(SCI 5c) Mark as SUB each S if it is below an SBAR and

contains NP as well as VP, but only if it is not directly below

a node of type PP or PRN (these were treated separately).

(SCI 6) Mark as CONC all remaining nodes. Contract away

each CONC with only text nodes in its sub-tree (by merging

the respective text) and merge CONC nodes that only have

CONC nodes as children.



Applying these rules to the parse tree in Figure 2 produces

the SCI-tree displayed in Figure 1. As our quality evaluation

in Section IV shows, in general, this small set of rules

already works reasonably well.

D. Triple Generation

The triple generation from extracted contexts is (relatively)

straight-forward. For each context, we identify the first

explicit verb phrase and surrounding adverbs to be the

predicate. Everything before that belongs to the subject, and

everything after that to the object. For the contexts from our

example sentence (S) this gives us the triple #1 from the

desired triples shown under 2 in Section I-A.

For relations resulting from SCI 2a-g and SCI 3 rules we

add the verb is between the head and its attachment, but

only if the attachment does not begin with a verb phrase

(we then use this verb phrase as predicate). This gives us

the remaining triples #2, #3 and #4 for our example sentence

from above.

To deal with possessive relations identified by the SCI

4 rule (see section III-C above) we use the predicate has

between head and attachment.

In some cases the object consists of a list of noun or

prepositional phrases (that are not enumeration items), for

example in the sentence:

Soubry graduated in law from the University of

Birmingham in 1979.

Here, the object consists of three parts: (in law), (from the

University of Birmingham) and (in 1979). We identify these

noun and prepositional phrases in the object when creating

our contexts in the SCR-phase, utilizing information from

the parse tree. From n identified phrases in the object we

derive triples, by in turn appending zero or one of the n - 1

last phrases to the first phrase:

#1: (Soubry) (graduated) (in law)

#2: (Soubry) (graduated) (in law from

the University of Birmingham)

#3: (Soubry) (graduated) (in law in 1979)

For n identified phrases in the object, this results in n triples.

IV. EVALUATION

We compare CSD-IE against the three OIE systems

ReVerb, OLLIE, and ClausIE. CSD-IE was implemented

as described in Section III, using the Stanford Constituent

Parser [9]. ClausIE was run in its default mode to extract

triples.

We evaluated the systems on two datasets: 200 random

sentences from the English Wikipedia, and 200 random

sentences from the New York Times. For comparability, we

used the exact same datasets as in [7], which the authors

made available on their web site2. The labels of their

evaluation are also available, however, we chose to label all

2http://www.mpi-inf.mpg.de/departments/d5/software/clausie.

ReVerb OLLIE ClausIE CSD-IE

#facts 249 408 610 677
#facts correct 188 230 421 474

prec-a 75.5% 56.4% 69.0% 70.0 %
prec-m 87.2% 80.4% 57.0% 76.8 %

coverage 47.2% 62.7% 95.4% 97.5 %
triple length 7.3 9.7 11.0 8.4

ReVerb OLLIE ClausIE CSD-IE

#facts 271 358 644 743
#facts correct 177 200 412 531

prec-a 65.3% 55.9% 64.0% 71.5 %
prec-m 93.8% 79.5% 71.4% 90.4 %

coverage 43.8% 61.0% 89.0% 91.8 %
triple length 7.0 10.4 11.6 7.8

Table I
RESULTS OF OUR QUALITY EVALUATION FOR ALL FOUR SYSTEMS FOR

THE TWO DATASETS WIKIPEDIA (ABOVE) AND NEW YORK TIMES

(BELOW).

extracted triples (by all four systems) again, for the following

reasons. First, for reasons of consistency (there is always

room for interpretation when it comes to assessing accuracy

and minimality). Second, to avoid a bias in favor or against a

certain system (all extractions were labeled together). Third,

because we also wanted to explicitly assess minimality for

each extraction.

The evaluation of [7] also comprises the ReVerb dataset

from [6], which consists of 500 random sentences from

the Web. However, the relative quality differences between

evaluated systems on that dataset were essentially the same.

Preliminary experiments on the ReVerb dataset have con-

firmed this impression, and we therefore excluded it from

our (already cumbersome) evaluation.

As explained in Section I, we labeled each extraction

(from each of the four systems) with two labels: one for

accuracy (yes or no) and one for minimality (yes or no).

From these labels, we computed the following accumulated

measures for each system:

precision wrt accuracy (prec-a) = the percentage of triples

labeled as accurate; see Section I

precision wrt minimality (prec-m) = the percentage of correct

triples labeled as minimal; see Section I

coverage = the percentage of word occurrences that occur

in at least one extracted triple for that system

average triple length in words = average length of extracted

triples for that system in words (ignoring special characters)

Table I shows the results for the two datasets. We note

that the numbers for both datasets closely agree with those

reported in [7], confirming the reasonability of our labels.

We first discuss the results for the Wikipedia dataset (Table

I, upper part). From all systems CSD-IE extracts the largest

number of facts overall (#facts), as well as the largest

number of correct facts (#facts correct). It also provides the

highest coverage of all systems (coverage). The precision

wrt accuracy (prec-a) and coverage of CSD-IE is comparable



to that of ClausIE, but our extracted facts are shorter

on average (triple length). Furthermore, the precision wrt

minimality (prec-m) is 20% higher - a drastic improvement.

This is because we explicitly consider minimality in our

approach and, as a result, our extracted facts are shorter.

ReVerb, the only system not utilizing a deep (constituent or

dependency) parse, uses patterns that match relatively short

facts. These seem to be very accurate, resulting in the best

precision and precision wrt minimality scores. In contrast,

coverage and the number of extracted facts are not nearly

as good as those of CSD-IE or ClausIE. OLLIE improves

upon ReVerb by extracting more facts and providing higher

coverage. However, overall precision drops drastically. This

has also been observed before in [7]. A common problem for

deep-parse-based OpenIE systems is the large influence of

parser errors. CSD-IE uses the Stanford Constituent Parser

[9], OLLIE uses the MaltParser [10] and ClausIE uses the

Stanford Dependency Parser [9]. One possible reason for

the comparably low precision of OLLIE might be that the

MaltParser was trained on data from a different domain and

had problems with the sometimes ungrammatical Wikipedia

sentences.

The results for the New York Times dataset, (Table I,

lower part) are similar to those of the Wikipedia dataset.

Sentences are typically longer and deeply nested, causing

more broken parses, resulting in slightly worse coverage for

all systems. The sentences also contain more facts - almost

all systems extract a slightly larger number of facts. Because

indirect speech and nested facts are very common in news

articles, many triples extracted by CSD-IE contain references

to other facts and are therefore more compact and minimal.

A preliminary investigation of errors for CSD-IE on both

datasets revealed that most of the inaccurate extractions were

caused by mistakes in the parse trees. We consider this an

important direction for future research, see the next section.

V. CONCLUSIONS AND FUTURE WORK

We have presented CSD-IE, a new system for open

information extraction (OIE). CSD-IE is based on contextual

sentence decomposition (CSD), a technique originally de-

veloped for semantic full-text search (SFTS). Our evaluation

has shown that CSD-IE simultaneously achieves good preci-

sion, high recall and very good coverage and minimality. The

aspects of coverage and minimality are particularly impor-

tant for applications such as semantic search, where precise

facts and small information loss are desirable. Our work has

raised some interesting directions for future research.

A preliminary error analysis shows that most inaccurate

extractions are due to a mistake in the (constituent) parse.

Since parsing is a complex problem, it would be interesting

to make the sentence constituent identification (SCI, see

Section III-A) more robust against errors in the parse. Or,

alternatively, pre-process the sentence, such that certain

common errors are avoided.

A more ambitious plan would be to avoid the “detour”

via a deep parse altogether, and try to identify the sentence

constituents in a more direct manner. Since our SCI tree

III-A is significantly more coarse-grained than the original

parse tree, there is hope that this problem can be solved

more efficiently and with higher quality.

A common phenomenon in more complex sentences is

that of transitivity. For example, consider the sentence

The ICRW is a non-profit organization headquartered

in Washington.

The following two triples would be considered both accurate

and minimal in our approach:

#1: (The ICRW) (is) (a non-profit organization)

#2: (a non-profit organization) (headquartered) (in Wash-

ington).

However, triple #2 would be significantly more informa-

tive, if the S part were replaced by The ICRW, that is,

the concrete entity to which it actually refers. It would be

desirable to deal with transitivity of this and more complex

kinds as a part of the OIE process.

REFERENCES

[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni, “Open information extraction from the web,” in
IJCAI, 2007, pp. 2670–2676.

[2] H. Bast, F. Bäurle, B. Buchhold, and E. Haussmann, “Broc-
coli: Semantic full-text search at your fingertips,” CoRR,
2012.

[3] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Et-
zioni, “Open language learning for information extraction,”
in EMNLP-CoNLL, 2012, pp. 523–534.

[4] F. Wu and D. S. Weld, “Open information extraction using
wikipedia,” in ACL, 2010, pp. 118–127.

[5] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam, “Open information extraction: The second gener-
ation,” in IJCAI, 2011, pp. 3–10.

[6] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations
for open information extraction,” in EMNLP, 2011, pp. 1535–
1545.

[7] L. D. Corro and R. Gemulla, “Clausie: clause-based open
information extraction,” in WWW, 2013, pp. 355–366.

[8] E. Haussmann, “Contextual sentence decomposition with
applications to semantic full-text search,” Master’s thesis,
University of Freiburg, July 2011.

[9] D. Klein and C. D. Manning, “Accurate unlexicalized pars-
ing,” in ACL, 2003, pp. 423–430.

[10] J. Nivre, J. Hall, and J. Nilsson, “Memory-based dependency
parsing,” in Proceedings of CoNLL, 2004, pp. 49–56.


