## **Metro Maps on Octilinear Grid Graphs**

Hannah Bast<sup>1</sup>, Patrick Brosi<sup>1</sup> and Sabine Storandt<sup>2</sup>

<sup>1</sup>University of Freiburg

<sup>2</sup> University of Konstanz

EuroVis 2020 - Norrköping, Sweden

# **Motivation - Official London Tube Map**



#### Goals

Given an input line graph G = (V, E, L) with edge lines L(e), render an **octilinear** drawing of G automatically and fast

#### Goals

Given an input line graph G = (V, E, L) with edge lines L(e), render an **octilinear** drawing of G automatically and fast



Input line graph G

#### Goals

Given an input line graph G = (V, E, L) with edge lines L(e), render an **octilinear** drawing of G automatically and fast



Input line graph G

Octilinear drawing of G

#### Goals (ctd.)

Allow arbitrary (but optimal) number of edge bends to circumvent obstacles and approximate geographical courses

#### Goals (ctd.)

Allow arbitrary (but optimal) number of edge bends to circumvent obstacles and approximate geographical courses



Octilinear embedding

#### Goals (ctd.)

Allow arbitrary (but optimal) number of edge bends to circumvent obstacles and approximate geographical courses



# Octilinear Embedding vs. Octilinear Drawing



### Octilinear Embedding vs. Octilinear Drawing



Excerpt of regional train map of southwestern Germany

1. Local search / Hill climbing (Stott 2004)

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)
- 3. Least Squares Optimization (Wang, Chi, 2011)

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)
- 3. Least Squares Optimization (Wang, Chi, 2011)

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)
- 3. Least Squares Optimization (Wang, Chi, 2011)

#### **Problems:**

Octilinearity not guaranteed [1]

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)
- 3. Least Squares Optimization (Wang, Chi, 2011)

#### **Problems:**

- Octilinearity not guaranteed [1]
- Produce octilinear embeddings, so no bends along edges (can be mitigated by adding explicit bend nodes) [1, 2, 3]

- 1. Local search / Hill climbing (Stott 2004)
- 2. Linear Programming (Nöllenburg, Wolff, 2005)
- 3. Least Squares Optimization (Wang, Chi, 2011)

#### **Problems:**

- Octilinearity not guaranteed [1]
- Produce octilinear embeddings, so no bends along edges (can be mitigated by adding explicit bend nodes) [1, 2, 3]
- Are often too slow for practical purposes (on-demand maps, editors) [1, 2]

**Basic idea:** Formulate as a set of shortest path problems.

**Basic idea:** Formulate as a set of shortest path problems.

 Build octilinear grid graph on which edge bends in paths are penalized





**Basic idea:** Formulate as a set of shortest path problems.

- Build octilinear grid graph on which edge bends in paths are penalized
- For each e ∈ E, e = (s, t):
  define start and target grid
  nodes S, T and find the
  shortest path from S to T.
  Make path an obstacle.









**Basic idea:** Formulate as a set of shortest path problems.

- Build octilinear grid graph on which edge bends in paths are penalized
- For each e ∈ E, e = (s, t):
  define start and target grid
  nodes S, T and find the
  shortest path from S to T.
  Make path an obstacle.









Basic idea: Formulate as a set of shortest path problems.

- Build octilinear grid graph on which edge bends in paths are penalized
- For each e ∈ E, e = (s, t):
  define start and target grid
  nodes S, T and find the
  shortest path from S to T.
  Make path an obstacle.



**Key question:** Should the shortest paths be determined simultaneously or iteratively (then: in which order)?





 Each grid node is extended by explicit bend edges between port nodes. Edge costs reflect the angle



- Each grid node is extended by explicit bend edges between port nodes. Edge costs reflect the angle
- To arrive at a grid node, we add sink edges



- Each grid node is extended by explicit bend edges between port nodes. Edge costs reflect the angle
- To arrive at a grid node, we add sink edges
- Sink edge costs reflect (1) the angle between the sink and continued lines on already settled sinks and (2) a node move penalty



























































# Linear Program (LP) or Approximate Approach (A)?

Final target values and approximation error  $\delta$  of linear program (LP-2) and approximate approach (A-2) when degree 2 nodes where contracted first

| LP-2   | t                                         | A-2                                                          | t                                                                                          | δ                                                                                                                                                                            |
|--------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 144.6  | 11m                                       | 146.5                                                        | 73ms                                                                                       | 1.3%                                                                                                                                                                         |
| 170.5  | 13h                                       | 175.1                                                        | 171ms                                                                                      | 2.7%                                                                                                                                                                         |
| 383.2  | 12h                                       | 399.2                                                        | 510ms                                                                                      | 4.1%                                                                                                                                                                         |
| 315.4  | 20h                                       | 326.0                                                        | 513ms                                                                                      | 3.4%                                                                                                                                                                         |
| 360.6  | 7h                                        | 361.4                                                        | 250ms                                                                                      | 0.2%                                                                                                                                                                         |
| ≥669.2 | _                                         | 758.3                                                        | 2.1 s                                                                                      | ≤14%                                                                                                                                                                         |
|        | 144.6<br>170.5<br>383.2<br>315.4<br>360.6 | 144.6 11m<br>170.5 13h<br>383.2 12h<br>315.4 20h<br>360.6 7h | 144.6 11m 146.5<br>170.5 13h 175.1<br>383.2 12h 399.2<br>315.4 20h 326.0<br>360.6 7h 361.4 | 144.6    11m    146.5    73ms      170.5    13h    175.1    171ms      383.2    12h    399.2    510ms      315.4    20h    326.0    513ms      360.6    7h    361.4    250ms |

# Linear Program (LP) or Approximate Approach (A)?



# Linear Program (LP) or Approximate Approach (A)?





Vienna, drawn with approx. approach in 202 ms.



Berlin, drawn with approx. approach in **764 ms**.



Stuttgart, drawn with approx. approach in 843 ms.



London (labeled), drawn with approx. approach in  ${\bf 2.7~s.}$ 

# Comparison to other work

## Sydney light rail network



Nöllenburg et al. t = 23 m

Wang et al. (2011) t = 816ms Wang et al. (2016) t ≈ 150ms \* Our approach t = 370ms

<sup>\*</sup> No time was reported, given time is for a network of similar size (Berlin)





Our approach allows for several refinements and improvements:

Labeling only rudimentary so far and optimized separately

Our approach allows for several refinements and improvements:

- Labeling only rudimentary so far and optimized separately
- Use grid graphs with different node densities

Our approach allows for several refinements and improvements:

- Labeling only rudimentary so far and optimized separately
- Use grid graphs with different node densities
- Include previously developed clustering techniques for local search

# Our approach allows for several refinements and improvements:

- Labeling only rudimentary so far and optimized separately
- Use grid graphs with different node densities
- Include previously developed clustering techniques for local search
- Use different base grids

# **Outlook: Orthoradial Base Grids**



# Thank you!

http://octi.informatik.uni-freiburg.de