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Abstract. There are two kinds of people: those who travel by car, and
those who use public transport.1 The topic of this article is to show
that the algorithmic problem of computing the fastest way to get from
A to B is also surprisingly different on road networks than on public
transportation networks.

On road networks, even very large ones like that of the whole of West-
ern Europe, the shortest path from a given source to a given target can be
computed in just a few microseconds. Lots of interesting speed-up tech-
niques have been developed to this end, and we will give an overview
over the most important ones.

Public transportation networks can be modeled as graphs just like
road networks, and most algorithms designed for road networks can be
applied for public transportation networks as well. They just happen to
perform not nearly as well, and to date we do not know how to route
similarly fast on large public transportation networks as we can on large
road networks.

The reasons for this are interesting and non-obvious, and it took us a
long time to fully comprehend them. Once understood, they are relatively
easy to explain, however, and that is what we want to do in this article.
Oh, and by the way, happy birthday, Kurt!

1 Introduction

The last five years have seen an exciting surge of research on routing algorithms
for large transportation networks. Most of this work has been done on road
networks, but some of it was also considering public transportation networks.

Both road networks and public transportation networks can be very naturally
modeled as directed graphs. For a road network, each node corresponds to a
junction, where two or more road segments meet, and the arcs of the graph
correspond to road segments. The cost of an arc is simply the time it takes to
travel across the respective road segment. A shortest path in this graph then
corresponds to the fastest way to get from a point A to a point B.

Public transportation networks are modeled in a similar way, except that
besides the spatial information we also have to deal with time schedules. In the
simplest and most natural model, each node corresponds to a departure or arrival
1 Admittedly, there are a few people using both modes of transportation from time to

time, but not that many.
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event at a particular station. For example, a node might stand for the event of
ICE 500 arriving at Mannheim Hauptbahnhof at 21:24.2 Arcs between nodes
then either correspond to waiting from one event to the next at a particular
station, or to taking a particular train (or bus or . . . ) from one station at a
particular time to another station. The cost of an arc is the respective waiting
or travel time, so that a shortest path in this graph corresponds to the fastest
way to get from a particular station A at a particular time tA to a particular
station B at a particular time tB.

We will come back to these two models in Section 2, giving slightly more detail
and commenting on possible refinements there.

1.1 Dijkstra’s Algorithm

The method of choice for computing the shortest path from a give source node
to a given target node in a given graph is Dijkstra’s algorithm, which dates back
to the 1950s [1]. In a nutshell, Dijkstra’s algorithm works as follows. Each node
is assigned a tentative cost, which is initially 0 for the source node and ∞ for all
other nodes in the graph. The algorithm then starts from the source node, and
visits all outgoing arcs from there. For each such outgoing arc, it checks whether
via this arc it can reach the node at the other side (the so-called tail) of the
arc at a lower cost than assigned to that node so far. If yes (which is true, in
particular, if we reach the node for the first time), its tentative cost is updated to
the new, lower cost. This procedure is called relaxing an arc. Once all outgoing
arcs of a node have been relaxed, that node is called settled. In the next round,
we pick the node with the smallest tentative cost, which has not been settled so
far, and relax its outgoing arcs. We iterate this until the target node is settled.

It is a simple, but non-trivial, elegant three-line proof to show that if the arc
costs are non-negative, then once a node is settled, the tentative cost assigned to
it at that time is actually the cost of the shortest path from the source to that
node. Therefore each node is settled at most once. It is also important to observe
that before Dijkstra’s algorithm settles the target node, it will have settled (and
thus computed the shortest path cost for) all nodes which can be reached from
the source at smaller cost. If we color all nodes settled by Dijkstra’s algorithm
before it reaches the target on a drawing of the road network in the plane, we
therefore see a disk-like area around the source node; see Figure 1.

What is the complexity of Dijkstra’s algorithm? Each settling of a node re-
quires to find, among the unsettled nodes at that point, that node with the small-
est tentative distance. This operation is supported by a data structure called a
priority queue, and it can be implemented to work in time O(log n), where n is
the number of items in the queue. Relaxing an arc potentially requires to up-
date the tentative cost of a node, and we know that if it is updated it is actually
decreased. This operation is therefore called decrease-key, and can be supported
in amortized constant time, that is, a sequence of m such operations takes O(m)

2 An event the author had the pleasure to witness personally many times over the
course of the last year.
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Fig. 1. The search space of Dijkstra’s algorithm on a road network, for a given source
and target. Left: the original algorithm. Right: its bidirectional version.

time. The complexity of Dijkstra’s algorithm is thus O(n · log n + m), where
n is the number of nodes settled before the target node, and m is the sum of
the out-degrees of these nodes. In any case, n is bounded by the total number
of nodes in the graph, and m by the total number of arcs, and if source and
target are far apart, these bounds are actually tight within a small constant
factor.

Interestingly, even 50 years after its invention, it is still not known whether
Dijkstra’s algorithm is theoretically optimal, or whether an algorithm exists that
solves the shortest path problem in linear time O(n + m). For our application,
this question is academic, however, since even in the best case, each node and
each arc would have to be visited at least once, and that alone is very expensive
when the network is very large.

For example, consider the road network of the whole of Western Europe. This
can be modeled by a graph with about 20 million nodes and about 50 million
arcs. It is hard to make the operations involved in settling a node faster than
100 nanoseconds on a standard PC (that is about the time it takes to read a
single cache line, or the time for a single cache miss). But even for such a highly
tuned implementation of Dijkstra’s algorithm, settling all nodes would take on
the order of seconds.

In public transportation networks we have yet more nodes. The local public
transportation network of Berlin-Brandenburg alone has around 4 million de-
parture and arrival events. Extrapolating this to the whole of Europe (we don’t
have the actual data yet, so we can only guess) would give a graph with hundreds
of millions of nodes.

2 Models Again

In our introduction above, we already gave a brief description of how to model
both road networks and public transportation networks as directed graphs. We
here recall these descriptions, and talk about a few more relevant details and
possible refinements.
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2.1 Road Networks

There isn’t much to add to the description for road networks; it really is that
simple. We have an arc for each road segment3, a node for each junction of two
or more segments, the cost of the arc is the time it takes to travel along that
arc, and the goal is to compute the shortest path from a given source node to a
given target node.

A number of recent works have addressed a time-dependent variant of this
problem, where an arc cost is not just a scalar value, but a piece-wise linear
function that maps each possible arrival time at the head of the arc to a travel
cost [2] [3]. A simple variant of Dijkstra’s algorithm can solve this problem as
well. As we will see in the next section, public transportation networks can also
be modeled by time-dependent graphs.

2.2 Public Transportation Networks

Let us recall the simple model from the introduction. We have a node for each
departure and arrival event, nodes are grouped by stations, and arcs are either
waiting arcs (between two nodes of the same station) or transit arcs (between
two nodes from different stations).

This modeling leaves out the important issue of transfer safety buffers and
costs : a change of vehicle takes time, and we want to penalize paths with many
changes of vehicle—two issues that do not arise in road networks. A simple and
natural way to model this, is by having two nodes for each arrival or departure
event, which represent the state of being on board a vehicle and at the station,
respectively, at the respective station and time.

In its simplest form, a query is given by a source station, an earliest departure
time at that station, and a target station. More realistically, however, source and
target are not stations, but geographic locations, from which we first have to walk
to nearby stations. This is important especially in municipal areas, where it is
not at all clear which station is the best to walk to first, and it really is (and
hence should be made) part of the routing problem to identify the best such
station. We then effectively have sets of source and target stations.

Note that this is not an issue in road networks, because these are typically
so dense that without significant loss of quality in the results, we can simply
snap to the nearest road segment or junction when source and target are given
as geographic locations.

The model we described so far is known as the time-expanded model. As an
alternative, we can also represent public transportation networks in the time-
dependent model described in the previous subsection. Simply have one node
per station, and the arc cost of getting from the station at the head of the arc
at time x to the tail of the arc is d− x + t, where d ≥ x is the next departure of
3 A long, curvy piece of road is typically approximated by a sequence of straight-line

segments. However, this is done for the purpose of realistic rendering of the network,
and is irrelevant for solving the shortest path problem. In fact, the first thing an
efficient algorithm would do is contract such sequences to one arc again.
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a vehicle to the tail station, and t its travel time. This indeed yields piece-wise
linear arc costs.

Asymptotically, the two models do not differ, since a time-aware Dijkstra com-
putation on the time-dependent graph essentially performs the same sequence
of operations as an ordinary Dijkstra computation on the time-expanded graph.
In practice, a carefully tuned implementation of the time-dependent model can
give improvements of a factor of 10 and more over the time-expanded model, but
this difference vanishes as soon as realistic features like transfer costs are taken
into account. For details on the comparison between the two models, see [4].

2.3 Multi-criteria Cost and Traffic Days

A non-trivial model extension that makes sense for road networks, but is almost
mandatory for public transportation networks is to consider multi-criteria cost
functions. For example, users are typically interested in both travel time and the
number of transfers but often not both of them can be minimized at the same
time: there may be a connection that takes two hours and does not require any
transfers, and there may be a connection which takes only one and a half hours
but requires two transfers. Some users will prefer the faster one, and some will
prefer the no-transfer one, and so we should (compute and) present both.

Another practical issue that significantly complicates routing on public trans-
portation networks are traffic days : certain connections operate only on certain
days and not on others.

With respect to their algorithmic solution, both issues are closely related in
that they mean that each node in the graph is no longer labeled by only a single
cost but by a whole set of incomparable costs instead. But again, Dijkstra’s
algorithm can be easily extended to also deal with this situation. The items
in the queue are now individual cost labels (of which a single node can have
several), and when settling a cost label, we relax each arc of the node to which
the label belongs as before except that we now have to consider the new cost
together with all the costs of the tail node of the arc, and discard those costs
which are no longer optimal.

Obviously, the complexity of relaxing an arc now depends on the number of
incomparable costs at the tail of the arc, and, in principle, this number could
grow very large. However, we and others have found that with a cost function
modeling traveling time and transfer costs, and considering traffic days over
periods of a few weeks, the average number of incomparable costs per node is
a small constant, and the running time of Dijkstra’s algorithm adapted to deal
with multiple costs per node lies about a factor of 10 over that of an ordinary
Dijkstra computation [5].

2.4 Computing Costs Versus Computing Actual Paths

In the next section we will often tacitly assume that all we want to compute is
the cost of a shortest path. It indeed typically holds that once we can compute
costs fast, we can also compute paths reasonably fast. A very simple, generic way
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goes as follows. Start at the source node. For each adjacent node v, compute the
cost of a shortest path from v to the target, and add the cost of the arc from the
source to v. The adjacent node with the smallest such sum lies on the (or rather:
a) shortest path. Pick that node, and do the same thing from there. Iterate.

This generic way requires d·l cost computations, where d is the average degree
of the nodes on the shortest path, and l is the length of the path. For any of the
algorithms mentioned in the following, there are approach-specific ways to do
much better this, but we will not get into the details in this paper. The bottom
line to remember is that once we can compute costs fast, we can also compute
the paths itself fast.

3 Tricks of the Trade . . . and Why and When They Work

With the models all set, the rest of the paper is now essentially a list of the
most relevant and effective “tricks of the trade” that have been developed for the
speeding up of shortest path queries on transportation networks, in particular
from the last decade. Most of these tricks have been invented and applied for road
networks first, and were only later transferred to public transportation networks
(with, as we will see, limited success so far).

The structure of each of the following subsections is as follows: give a short
description of the “trick”, explain why it works well for road networks, and then
say what the problems are when applying it to public transportation networks.
Wherever possible, we will roughly quantify the performance gain in terms of
asymptotic complexity and / or actual running times, and refer to the respective
papers for the detailed experiments.

As a side effect, this section will also be giving an overview of all the fasci-
nating recent work on routing in transportation networks. This overview is by
no means complete, however, since we focus on those tricks which turned out to
be most successful, and in each case mention only the one or two most represen-
tative works using that trick. For a more complete survey of recent techniques
on routing in road networks, see, for example, [6]. For an account of routing
algorithms for public transportation networks, see, for example, [7].

3.1 Bidirectional Search

A very simple idea to improve over the plain Dijkstra algorithm is to simulta-
neously search from the source and target node at the same time, until ”the two
search frontiers meet”. More precisely, we maintain two priority queues, one for
the search from the source, as for the ordinary Dijkstra, and one for the back-
ward search from the target, which is just a forward search in the reversed graph,
that is, the graph where each arc (u, v) is replaced by (v, u). In each round, we
settle the node with the smallest overall tentative cost, that is, from the source
or to the target; for this, a simple comparison of the minima of the two priority
queues suffices. Once we settle a node in one queue that is already settled in
the other queue, we get the first tentative cost of a shortest path. To guarantee
optimality, we have to continue until the sum of the tentative costs of the current
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minima of the queues is above the current tentative shortest path cost (which
then is indeed the cost of the shortest path).

Speaking in terms of Figure 1, bidirectional Dijkstra reduces the search from
a single disk with radius r, to two discs with radius r/2. That is, the search
space (and hence the query processing time), halves. This by itself is not a big
improvement, but as we will see in the following subsections, bidirectional search
turns out to be a key ingredient in other, more sophisticated speed-up techniques.

In public transportation networks bidirectional search is more complicated,
since we know the target station, but not the particular node at that station at
which we are going to arrive. In fact, finding that node is a significant part of
the problem we want to solve in the first place. What we can so, however, is to
search backwards from the set of all nodes at that station. The backward search
would then compute, for each node that it settles, the cost of the path to the
earliest node of the station which it can reach. Combined with other techniques
this becomes yet more complicated, but by itself is not one of the main obstacles.

Summary: Bidirectional search by itself is not very effective, but is an important
ingredient in more sophisticated techniques. In public transportation networks,
we need to search backwards from a whole set of potential target nodes, which
makes things more complicated.

3.2 Hierarchy

Most navigation devices in public use nowadays implement a variant of the
following simple routing heuristic. Roads have different levels of importance: for
example, in the road map of Manhattan in Figure 2 (left), we see white (small)
roads, yellow (national) roads, and orange roads (motorways). A simple heuristic
is then to do a bidirectional search, that takes into account all the roads in close
proximity to the source and target, but once a certain distance from the source
or target is reached, considers only yellow and orange roads, and at a certain
even larger distance from the source or target considers only the orange roads.
For an appropriate definition of “close proximity” and “certain distance” most
shortest paths indeed have that property, like the path in the Figure 2.

This heuristic very significantly reduces the number of nodes that have to be
settled and arcs that have to be relaxed, however, at the price of a certain loss
of exactness. In the seminal works of [8] and [9] this heuristic has been turned
into an exact algorithm, by actually computing a level of importance for each arc
(which intuitively correspond to the road colors in Figure 2, but algorithmically
have nothing to do with them). On road networks both precomputation and
query times are very fast. With the latest version of their algorithm, the impor-
tance levels can be computed in about 15 minutes for the complete road network
of Western Europe, with subsequent query times on the order of 1 millisecond.
The method was, quite appropriately, named highway hierarchies.

On public transportation networks, even if we leave the complications of bidi-
rectional search described in Section 3.1 aside, experimental studies ( [10] and
also our own) have shown that the speed-ups obtained are much less dramatic
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Fig. 2. Left: a shortest path in the road network of Manhattan. Right: a section of the
tram + bus network of Zurich.

than for road networks. On large municipal areas, query processing times can
even be worse than for a well-tuned implementation of Dijkstra’s algorithm.

The main reason for this disappointing performance is actually easy to under-
stand. Look at the tram + bus network of Zurich in Figure 2 (right), and think
of a few random queries and their solutions. You will find that there is hardly
any hierarchy. Intuitively, all the trams and buses are equally important, and
exactly which tram or bus is chosen for a given query depends more on how well
the schedules of the various lines match, than on some connection being more
important than others. Once we travel long-distance between cities, a first level
of hierarchy does appear (intuitively, the long-distance trains as opposed to the
local trams and buses), but not on the intra-city level.

While this may be fine for a relatively small area like that of Zurich (about
one thousand stations), this is a major performance problem for large municipal
areas like, for example, New York (several tens of thousands of stations, with
tens of millions of arrival / departure events). A Dijkstra computation even on
this local network takes on the order of seconds, and hierarchical methods are
of no use to speed things up there.

Worse than that, also the precomputation time suffers on such networks. In
order to identify the first level of hierarchy, a method like highway hierarchy
does a local search from each node, until all paths have reached the next level
of the hierarchy. But for all nodes within a municipal area, this local search will
have to cover the whole municipal area, which can encompass millions of nodes.
In contrast, we know that for road networks local searches of only a few hundred
nodes are enough to discover the next level of the hierarchy [9].

Summary: The efficiency of hierarchical approaches in terms of both precompu-
tation and query time is proportional to the extent of the local searches necessary
to find the next level of hierarchy. For road networks, a few hundred nodes per
local search are typically enough. For public transportation networks, frequently
whole municipal areas with millions of nodes need to be explored.
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3.3 Shortcuts / Contraction

Recall the footnote in Section 2, where we talked about modeling a long, curvy
piece of road as a sequence of short straight-line road segments. As mentioned
there, this is done for the purpose of nice rendering. For the purpose of the
shortest-path computation, we may as well replace that sequence by a single arc
again, thus significantly reducing the number of nodes and arcs in the graph.
This replacement is an instance of so-called contraction, and the new arc is called
a shortcut. Some methods also insert shortcuts without actually removing arcs,
but instead have a mechanism to consider only selected arcs at query time [11].

For a method like highway hierarchies, contraction is of good use not only on
the original graph, but also on the iteratively computed subnetworks. Just think
of the subnetwork of all motorways. Most junctions there are of the kind that
we either enter or leave the motorway to or from a less important road. With all
non-motorways removed from the graph, we will have only very few nodes with
degree larger than 2, namely the actual motorway junctions.

In fact, contraction can be taken one step further by also contracting nodes
of a degree larger than 2. To contract a node x, we simply look at all pairs u, v,
where u is adjacent to an incoming arc and v is adjacent to an outgoing arc,
and check whether there is a shortest path containing u, x, v. If yes, we insert
the shortcut (u, v). This pays off, provided that we do not insert (many) more
shortcuts than we remove arcs by removing x; see [9] for details.

Note that contraction and shortcuts are not so much a stand-alone method,
but have instead acted as a catalyzer for a variety of multi-level methods, in
particular: [9] [11] [12].

As far as public transportation networks are concerned, consider again the
tram and bus network of Zurich from Figure 2. Most stations are “junctions”,
where more than one line meets, and if one takes the possibility of walking
between stations into account (see Section 2.2), the average number of lines to
which one can transfer at a given station increases further. This is especially
true in cities with many different transportation agencies and therefore many
stations in the vicinity of each other. But contraction and / or the introduction
of shortcuts is only effective for nodes of low degree.

We have already found in Section 3.2, that the difficult searches are the local
ones, where local can mean a whole municipal area. Unfortunately, it is exactly
in these area, on the lowest level of the network, that the node degree is too high
for contraction to be effective.
Summary: Contraction / Shortcuts don’t help us speeding up local searches on
the lowest level of the hierarchy, due to the high node degree there.

3.4 Goal Direction

The simplest form of goal direction is to augment Dijkstra’s algorithm by a
heuristic that for each node in the graph estimates the cost to the given target.
Nodes are then retrieved from the priority queue by the sum of their tentative
cost and the value of the heuristic function. This variant of Dijkstra’s algorithm
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is known under the name A∗ (A-star) algorithm, and was first described in
1968 [13].

The performance gain of A∗ depends on the quality of the heuristic. It is a
three-line proof (very similar to the correctness proof for Dijkstra’s algorithm)
that A∗ is correct, whenever the heuristic function underestimates the actual
cost of the respective node to the target. If the heuristic cost is always zero, we
are back to Dijkstra’s algorithm. If the heuristic function magically knows the
exact cost to the target, A∗ will be perfect in that it settles only the nodes on
the (or rather: a) shortest path.

One simple, non-magical heuristic is to underestimate the cost to the target
by the geographic straight-line distance to the target divided by the maximum
speed of a vehicle anywhere in the network. This heuristic always underestimates
the true cost, sometimes by not much (when the shortest path to the target
is geographically relatively straight and uses mainly motorways), sometimes a
lot (when the shortest path to the target is long-winding and uses mainly slow
roads). Overall, this heuristic gives a notable but not very dramatic improvement
in query processing time by a factor of about 2 to 3, for both road and pub-
lic transportation networks. A more powerful heuristic, based on precomputed
distances to so-called landmarks, has been presented in [14].

The most powerful form of goal direction is provided by so-called arc flags
[15] [16]. Here the graph is partitioned into k regions, and for each arc k bits
are precomputed, where the ith bit is 1 if and only if that arc is on a shortest
path to a node within region i. At query time we can then simply ignore all arcs
outside the region containing the target where the bit for that region is set to 0.
In an extreme case, where each node forms a region on its own, the arc flags for
the target node would then show us the shortest path without any detour.

These arc flags / bits can be computed by running Dijkstra’s algorithm sep-
arately from each node, in the reversed graph. This, however, is equivalent to
a quadratic-cost all-pairs shortest path computation. It is easy to see, that it is
enough to consider only nodes on the boundary of each region. In a perfect grid
graph with n nodes, partitioned into k parts (by

√
k − 1 horizontal and

√
k − 1

vertical cuts), the number of boundary nodes would be on the order of
√

n · k,
which still gives an order n3/2 cost for the precomputation, even for small k. In
real graphs, the cost tends more towards n2.

A conceptually simple trick to reduce the precomputation cost to almost linear
is to work with a multi-level partitioning of the graph. In the precomputation,
the backwards Dijkstra computation from a boundary node of a cell in the
partitioning can then stop, as soon as all nodes in the containing cell from the
next level are settled.

It is here that we meet another fundamental difference between road networks
and public transportation networks. Namely, for road networks we can indeed
settle all nodes in a geographically bounded region with cost roughly propor-
tional to the number of nodes in that region; see, for example, [6].

In public transportation networks, however, we have a fundamental and very
annoying problem, which we will explain by an example. Consider a node in



Car or Public Transport—Two Worlds 365

Zurich and assume that we want to settle all nodes in Zurich and the surrounding
villages. Even though the geographic extent of that region is relatively small,
there will be several nodes in that region which can be reached only at a very
high cost. The reason is simply bad connectivity: we might be just too late for
the last bus of the day and have to wait overnight for the first bus of the next
day, thus getting an optimal connection taking 15 hours. But in 15 hours, we
can get to the airport, take a plane to New York and explore half of the city
there . . . and Dijkstra’s algorithm will just do that.

As extreme as it may sound, this phenomenon is actually the rule and not the
exception. We consider it a major open problem to come up with an algorithm
for local searches in public transportation networks with cost proportional to
the number of nodes to be settled.

Summary: Goal direction is potentially very effective but has very high precom-
putation costs. For public transportation networks, this cost is quadratic due to
the lack of efficient algorithms for local searches on such networks.4

3.5 Distance Tables

An extreme precomputation would be to compute a table with distances between
all pairs of nodes in the given graph. Query times would then be instantaneous
(recall the bottom line of Section 2.4 that once we can compute the cost fast,
we can also compute the actual paths fast), but the precomputation complexity
would be quadratic in both time and space.

Distance tables for a subset of the nodes have been used as a “turbo” in
various approaches in the past. We here briefly describe transit node routing,
which works solely with distance tables and is the fastest method for routing in
road networks (with at the same time reasonable preprocessing) to date [17] [18].

The transit nodes are a subset of nodes with the following “magical” properties:
(1) the set is small, on the order of

√
n, where n is the total number of nodes

in the network; (2) all shortest paths that cover a certain minimal geographic
distance D have at least one transit node on them; (3) the number of transit
nodes hit first on shortest paths that start from a fixed node is small; we call
these few transit nodes the access nodes of a node.

Given such a set of transit nodes, we precompute for each node, the distances
to all of its access nodes, and the distance between each pair of transit nodes. For
a given query, let x and y be the number of access nodes of the source and target,
respectively. To answer the query, we then need to look up a mere x+y +x ·y of
the precomputed distances and try out all x ·y combinations of access node near
the source and access node near the target. On road networks the astonishingly
low number of 5 access nodes, on average, can be achieved, leading to extremely
fast query times on the order of a few microseconds. The precomputation can
be done in a number of ways, one of which is similar to the precomputation for
highway hierarchies and with a comparable complexity [18].

4 The precomputation from [2], although extremely well-tuned, is quadratic, too.
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It is important to understand that due to property (2) above, this only works
when the source and target are geographically at least a distance of D apart.
(Obviously the short shortest paths cannot all be hit by a small set of common
transit nodes, too.) But when D is small, this is not a problem, since for queries
below this threshold any conventional method is good enough; see [18] for details.

Experiments show that also in public transportation networks we can find a
good set of transit nodes with properties (1) - (3) above. The number of access
nodes per node is by a factor of 5 - 10 higher than in road networks, but still
small enough to yield query times on the order of milliseconds.

The problem are (a) the local searches required to precompute, for each node,
the distances to its access nodes, and (b) the local searches required at query
time when source and target are less than the distance D apart. Both of these
can, and often will, involve computing shortest paths of very large cost, and we
have no efficient solution for that case for exactly the reasons described at the
end of Section 3.4 (the “it can take 15 hours to the nearby village” problem).
Summary: A good set of transit nodes can be found for both road and public trans-
portation networks. However, in public transportation networks, we do not have
efficient algorithms for the local searches required to precompute the distances to
the access nodes or at query time when source and target are close together.

4 Conclusions

We gave an overview of the main techniques to speed up shortest path compu-
tation on transportation networks compared to Dijkstra’s algorithm. We specif-
ically looked at: bidirectional search, hierarchies of subnetworks, goal direction,
contraction and shortcuts, and distance tables. We found that all of these ap-
proaches work well (and some extremely well) for road networks, but none of
them gave convincing results for public transportation networks so far. We iden-
tified two key open problems which so far have obviated fast routing on very
large public transportation networks:
Open Problem 1: (Speed-up despite lack of hierarchy) How to achieve, with rea-
sonable precomputation cost, a significant speed-up over Dijkstra’s algorithm in
large municipal areas with hardly any hierarchy, for example, in large bus-only
networks?
Open Problem 2: (Efficient local searches) How to compute shortest paths to all
nodes in a local (for example, geographic) neighborhood efficiently, in the face of
(albeit few) shortest paths within that neighborhood of large cost?
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