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ABSTRACT
We present Broccoli, a fast and easy-to-use search engine
for what we call semantic full-text search. Semantic full-
text search combines the capabilities of standard full-text
search and ontology search. The search operates on four
kinds of objects: ordinary words (e.g., edible), classes (e.g.,
plants), instances (e.g., Broccoli), and relations (e.g., occurs-
with or native-to). Queries are trees, where nodes are ar-
bitrary bags of these objects, and arcs are relations. The
user interface guides the user in incrementally construct-
ing such trees by instant (search-as-you-type) suggestions of
words, classes, instances, or relations that lead to good hits.
Both standard full-text search and pure ontology search
are included as special cases. In this paper, we describe
the query language of Broccoli, the main idea behind a
new kind of index that enables fast processing of queries
from that language as well as fast query suggestion, the
natural language processing required, and the user inter-
face. We evaluated query times and result quality on the
full version of the English Wikipedia (40 GB XML dump)
combined with the YAGO ontology (26 million facts). We
have implemented a fully functional prototype based on our
ideas and provide a web application to reproduce our qual-
ity experiments. Both are accessible via http://broccoli.

informatik.uni-freiburg.de/repro-corr/ .

1. INTRODUCTION
In this paper, we describe a novel implementation of what

we call semantic full-text search. Semantic full-text search
combines traditional full-text search with structured search
in knowledge databases or ontology search as we call it in
this paper.

In traditional full-text search you type a (typically short)
list of keywords and you get a list of documents containing
some or all of these keywords, hopefully ranked by some no-
tion of relevance to your query. For example, typing broccoli
leaves edible in a web search engine will return lots of web
pages with evidence that broccoli leaves are indeed edible.

In ontology search, you are given a knowledge database
which you can think of as a store of subject-predicate-object
triples. For example, Broccoli is-a plant or Broccoli native-
to Europe. These triples can be thought of to form a graph
of entities (the nodes) and relations (the edges), and ontol-
ogy search allows you to search for subgraphs matching a
given pattern. For example, find all plants that are native
to Europe.

Many queries of a more “semantic” nature require the
combination of both approaches. For example, consider the
query plants with edible leaves and native to Europe, which
will be our running example in this paper. A satisfactory an-
swer for this query requires the combination of two kinds of
information. First, a list of plants native to Europe. This is
hard for full-text search but a showcase for ontology search,
see above. Second, for each plant the information whether
its leaves are edible or not. This kind of information can be
easily found with a full-text search for each plant, see above.
But it is quite unlikely (and unreasonable) to be contained
in an ontology, for reasons explained in Section 2.3.

The basic principle of our combined search is to find con-
textual co-occurrences of the words from the full-text part
of the query with entities matching the ontology part of the
query. Consider the sentence: The stalks of rhubarb are ed-
ible, but its leaves are toxic. Assume for now that we can
recognize entities from the ontology in the full text (we come
back to this in Section 3.2). In this case, the two underlined
words both refer to rhubarb, which our ontology knows is
a plant that is native to Europe. Obviously, this sentence
should not count as evidence that rhubarb leaves are edible.
We handle this by decomposing each sentence into what we
call its contexts: the parts of the sentence that “belong”
together. In this case the stalks of rhubarb are edible and
rhubarb leaves are toxic. An arc from the query tree now
matches if and only if its elements co-occur in one and the
same context.

Figures 1 and 2 show screenshots of our search engine in
action for our example query. The figures and their captions
also explain how the query can be constructed incrementally
in an easy way and without requiring knowledge of a partic-
ular query language on the part of the user. We encourage
the reader to try our online demo that is accessible via http:

//broccoli.informatik.uni-freiburg.de/repro-corr/ .
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Words 

Cabbage (34) 

Broccoli (58) 

Lettuce (23) 

Instances: 

1 - 3 of 421 

House plant (17) 

Garden plant (24) 

Crop (16) 

Classes: 

1 - 3 of 28 

  Broccoli 

Ontology: Broccoli 

Broccoli: is a plant; native to Europe. 

Document: Edible plant stems 

The edible portions of Broccoli are the stem tissue, the flower buds, as 

well as the leaves. 

 

Cabbage 

Ontology: Cabbage 

Cabbage: is a plant; native to Europe. 

 
Document: Cabbage 

The only part of the plant that is normally eaten is the leafy head. 

Your Query: 

Plant 

occurs-with edible leaves 

native-to 

Hits: 1 - 2 of 421 

Europe 

   

occurs-with  <Anything> 

Relations: 

1 - 3 of 7 

cultivated-in  <Location> 

belongs-to   <Plant family> 

(67) 

(58) 

 type here to extend your query … 

Figure 1: A screenshot of the final result for our example query. The box on the top right visualizes the
current query as a tree. There is always one node in focus (shown in bold), in this case, the root of the tree.
The large box below shows the hits grouped by instance (of the class from the root node) and ranked by
relevance (if Broccoli is among the hits, we always rank it first). Evidence both from the ontology and the
full text is provided. For the latter, a whole sentence is shown, with parts outside of the matching context
grayed out. With the search field on the top left, the query can be extended further. The four boxes below
provide context-sensitive suggestions that depend on the current focus in the query, here: suggestions for
subclasses of plants, suggestions for instances of plants that lead to a hit, suggestions for relations to further
refine the query. One of the suggestions is always highlighted, in this case the cultivated-in relation. It can
be directly added to extend the query by pressing Return.

1.1 Our contribution
Broccoli supports a subset of SPARQL1 (essentially trees

with a single free variable at the root) for the ontology part
of queries. Moreover, it allows a special occurs-with relation
that can be used to specify co-occurrence of a class (e.g.,
plant) or instance (e.g., Broccoli) with an arbitrary com-
bination of words, instances, and further subqueries. Both
traditional full-text search and pure ontology search are sub-
sumed as special cases. This gives a very powerful query
language. See Section 4 for details.

For the occurs-with relation, we provide a novel kind of
pre-processing that decomposes sentences into contexts of
words that belong together. In particular, this considers
enumerations and sub-clauses. Previous approaches have
used co-occurrence in a whole paragraph or sentence, or
based on word proximity; all of these often give poor re-
sults. See Section 3 for details.

We present the key idea behind a novel kind of index that
supports fully interactive query times of around 100 mil-
liseconds and less for a collection as large as the full English
Wikipedia (40 GB XML dump, 418 million contexts of the
kind just described). Previous approaches, including adap-
tations of the classic inverted index, yield query times on
the order of seconds or even minutes for the kind of queries

1http://www.w3.org/TR/rdf-sparql-query

we support on collections of this size. See Section 2.1 for
related work, and Section 5 for details.

All the described features have been implemented into a
fully functional system with a comfortable user interface.
There is a single search field, as in full-text search, and sug-
gestions are made after each keystroke. This allows the user
to incrementally construct semantic full-text queries without
prior knowledge of a query language. Results are ranked by
relevance and grouped by instance, and displayed together
with context snippets that provide full evidence for why that
particular instance is shown. See Figures 1 and 2 for an ex-
ample, and Section 6 for details.

We provide experimental results on the result quality for
the English Wikipedia combined with the YAGO ontology
[20]. For the quality results, we used 46 Queries from the
SemSearch List Search Track (e.g., Apollo astronauts who
walked on the Moon), 15 queries from the TREC 2009 Entity
Track benchmarks (e.g., Airlines that currently use Boeing
747 planes) and 10 lists from Wikipedia (e.g. List of partic-
ipating nations at the Winter Olympic Games). We allow
reproducing our results at http://broccoli.informatik.

uni-freiburg.de/repro-corr/ . See Section 7 for the de-
tails of our experiments.

We want to remark that the natural language processing,
the index, and the user interface behind Broccoli are com-
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Words: 

1 - 3 of 1.377 

Plan (drawing) (132) 

Plane (geometry) (215) 

Planar graph (124) 

Entities: 

1 - 3 of 535 

Planet (12.420) 

Plant (16.266) 

Plant (building complex) (4.288) 

Classes: 

1 - 3 of 36 

Words: 

1 - 3 of 178 

Leather (53) 

Leaf (81) 

Lead (24) 

Entities: 

1 - 3 of 67 

Leader (3.432) 

League (5.557) 

Learning disorder (53) 

Classes: 

1 - 3 of 33 

Baobab (52) 

Broccoli (58) 

Alfalfa (17) 

Entities: 

1 - 3 of 67 

House plant (49) 

Garden plant (98) 

Crop (36) 

Classes: 

1 - 3 of 47 

   

occurs-with <Anything> 

Relations: 

1 - 3 of 8 

native-to <Location> 

cultivated-in <Location> 

(97) 

(82) 

  plant, the CLASS   edible leaves   native-to, the RELATION 

occurs-with 

Plant 

edible leaves occurs-with 

Plant 

ANYTHING 
No query yet 

plans 

planned 

plants 

(61.838) 

(60.569) 

(56.481) 

leaves 

leaf 

leafy 

(4.617) 

(1.600) 

(264) 

Figure 2: Snapshots of the query, search field, and suggestion boxes for three stations in the construction
of our example query. Column 1: At the beginning of the query, after having typed plan. Column 2: After
the class plant has been selected and the occurs-with relation has been added and having typed edible lea.
Column 3: After having selected edible leaves. The focus automatically goes back to the root node.

plex problems each on their own. The contribution of this
paper is the overall design of the system, the basic ideas
for each of the mentioned components, an implementation
of a fully functional prototype based on these ideas, and a
first performance and quality evaluation providing a proof
of concept. Optimization of the various components is the
next step in this line of research; see Section 8.

2. RELATED WORK
Putting the work presented in this paper into context is

hard for two reasons. First, the literature on semantic search
technologies is vast. Second, “semantic” means so many
different things to different researchers. We roughly divide
work in this broad area into four categories, and discuss each
category separately in the following four subsections.

2.1 Combined ontology and full-text search
Ester [7] was the first system to offer efficient combined

full-text and ontology search on a collection as large as the
English Wikipedia. Broccoli improves upon Ester in three
important aspects. First, Ester works with inverted lists
for classes and achieves fast query times only on relatively
simple queries. Second, Ester does not consider contexts
but merely syntactic proximity of words / entities. Third,
Ester’s simplistic user interface was ok for queries with one
relation, but practically unusable for more complex queries.

Various other systems offering combinations of full-text
and ontology search have been proposed. Semplore [22] sup-
ports a query language similar to ours. However, elements
from the ontology are not recognized in their contexts, but

there is simply one piece of text associated with each in-
stance (which would correspond to a single large context in
our setting). Queries are processed with a standard inverted
index , and no particular UI is offered. In Hybrid Search [8],
the full text and the ontology are searched separately with
standard methods (Lucene and Sesame), and then the re-
sults are combined. There is no particular natural language
processing. Concept Search [15] adds information about
identified noun phrases and hyponyms to the index. Queries
are bags of words, which are interpreted semantically. The
query processing uses standard methods (Lucene), with very
long inverted lists for the semantic index items. GoNTogle
[14] combines full text with annotations which are searched
separately and then combined, similarly as in [8]. Queries
are bags of words. There is no full ontology search and no
particular natural language processing. Faceted Wikipedia
Search [16] offers a user interface with similarities to ours.
However, the query language is restricted, there is noth-
ing comparable to our contexts but only a small abstract
per entity like in [22], and query processing is DB-based
and very slow, despite the relatively small amount of data.
SIREN2 provides an integration of pure ontology search into
Lucene. How to combine the then possible full-text and on-
tology searches is up to the user of the framework. Finally,
systems like [23] try to interpret a given keyword query se-
mantically and translate it into a suitable SPARQL query
for pure ontology search.

2http://siren.sindice.com
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2.2 Systems for entity retrieval
Entity retrieval is a line of research which focuses on

search requests and corresponding result lists centered around
entities (instead of around documents, as in traditional search).
Since 2009, there is also a corresponding Entity Track at
TREC3. The tasks of this track are both simpler and harder
than what we aim at in this paper.

They are harder because the overall goal is entity retrieval
from web pages. The ClueWeb09 collection introduced at
TREC 2009 is 25 TB of text. The relative information con-
tent is, however, low as is typical for web contents. More-
over, identifying a representative web page for an entity is
part of the problem.

To make the tasks feasible at all under these circum-
stances, the queries are relatively simple. For example, Air-
lines that currently use Boeing 747 planes.4 Even then the
tasks remain very hard, and, for example, NDCG@R figures
average only around 30% even for the best systems [4].

Broccoli queries can be trees of arbitrary degree and depth.
All entities that have a Wikipedia page are supported. And,
most importantly, the query process is interactive, providing
the user with instant feedback of what is in the collection
and why a particular result appears. This is key for con-
structing queries that give results of high quality.

The price we pay is a more extensive pre-processing as-
suming a certain “cleanliness” of the input collection. Our
natural language processing currently requires around 1600
core hours on the 40 GB XML dump of the English Wikipedia.
And Wikipedia’s rule of linking the first occurrence of an
important entity in an article to the respective Wikipedia
article helps us for an entity recognition of good quality; see
Section 3.2. Bringing Broccoli’s functionality to web search
is a very reasonable next step, but out of scope for this ar-
ticle.

Another popular form of entity retrieval is known as ad-
hoc object retrieval [18]. Here, the search is on structured
data, as discussed in the next subsection. Queries are given
by a sequence of keywords, similar as in full-text search, for
example, doctors in barcelona. Then query interpretation
becomes a non-trivial problem; see Section 2.4.

2.3 Information extraction and ontology search
Systems for ontology search have reached a high level of

sophistication. For example, RDF-3X can answer complex
SPARQL queries on the Barton dataset (50 million triples)
in less than a second on average [17].

As part of the Semantic Web / Linked Open Data [9]
effort, more and more data is explicitly available as fact
triples. The bulk of useful triple data is still harvested from
text documents though. The information extraction tech-
niques employed range from simple parsing of structured
information (for example, many of the relations in YAGO
or DBpedia [2] come from the Wikipedia info boxes) over
pattern matching (e.g., [1]) to complex techniques involv-
ing non-trivial natural language processing like in our paper
(e.g., [5]). For a relatively recent survey, see [19].

Our work differs from this line of research in two impor-
tant aspects: (1) the full text remains part of the index that

3http://ilps.science.uva.nl/trec-entity
4In our framework these are queries with two nodes and one
occurs-with edge.

is searched at query time; and (2) our system is fully inter-
active and keeps the human in the loop in the information
extraction process. This has the following advantage:

Ontologies are good for facts like which plants are native
to which regions, who was born where on which date, etc.
Such facts are easy to define and can be extracted from ex-
isting data sources in large quantity and with reasonable
quality. And once in the ontology, they are easily combin-
able, permitting queries that would not work with full-text
search.

But for more complex facts like our broccoli has edible
leaves, it is the other way round. They are easy to express
and search in full text, but tedious to define, include, and
maintain in an ontology. Let alone the problem of guessing
the right relation names when searching for them.

By keeping the full text, we can leverage the intelligence
of the user at query time. The query Plant occurs-with edi-
ble leaves does not specify the type of the relation between
the occurrence of the plant and the occurrence of the words
edible and leaves. Yet a moment’s thought reveals that it is
quite likely that a context matching these elements gives us
what we want. Similarly as in full-text search, there is often
no need to be overly precise in order to get what you want.
And just like the result snippets in full-text search, Broc-
coli’s result snippets provide instant feedback on whether
the listed plant is really one with edible leaves.

Finally, if information extraction is desired nevertheless,
Broccoli can be a useful tool for interactively exploring the
collection with respect to the desired information, and for
formulating appropriate queries.

2.4 Systems for question answering
Question answering (QA) systems provide similar func-

tionality as our semantic full-text search. The crucial dif-
ference is that questions can be asked in natural language,
which makes the answering part much harder. The system
is burdened with the additional and very complex task of
“translating”, in one way or the other, the given natural
language query into a more formal query or queries that can
be fed to a search engine and / or a knowledge database.

The perfect QA system would obviate the need for a sys-
tem like ours here. But research is still far from achieving
that goal. All state-of-the-art QA systems, including the big
commercial ones, are specialized to quite particular kinds
of questions. For example, Wolfram Alpha works perfectly
for Which cities in China have more than 10 million in-
habitants, but does not work if more is replaced by less or
China by Asia, and does not even understand the question
Which plants have edible leaves. IBM’s Watson was tuned
for finding the single most probable entity when given one of
the (intentionally obscured) clues from the Jeopardy! game.
And both of these systems lack transparency: it is hard to
predict whether a question will be understood correctly, it
is hard to understand the reasons for a missing or wrong
answer, and there is no possibility of interaction or query
refinement.

For our semantic full-text search both the query language
and the relation between a given query and its result are
well-defined and maximally transparent to the user; see the
discussion in Section 2.3. The price we pay is query formu-
lation in a non-natural language. The success of full-text
search has shown that as long as the language is simple
enough, it can work.
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3. INPUT DATA AND NATURAL LANGUAGE
PRE-PROCESSING

3.1 Input data
Broccoli requires two kinds of inputs, a text collection and

an ontology. The text collection consists of documents con-
taining plain text. The ontology consists of typed relations
with each relation containing an arbitrary set of fact triples.
The subjects and objects of the triples are called instances.
Each instance belongs to one or more classes. The classes
are organized in a taxonomy; the root class is called Entity.

3.2 Entity recognition
The first step is to identify mentions of or referrals to

instances from the ontology in the text documents. Consider
the following sentence, which will be our running example
for this section:

(S) The usable parts of rhubarb, a plant from the Polygo-
naceae family, are the medicinally used roots and the edible
stalks, however its leaves are toxic.

Both rhubarb and its refer to the instance Rhubarb from
our ontology, which in turn belongs to the classes Plant and
Vegetable (among others).

Our entity recognition on the English Wikipedia is sim-
plistic but reasonably effective. As a rule, first occurrences of
entities in Wikipedia documents are linked to their Wikipedia
page. When parsing a document, whenever a part or the full
name of that entity is mentioned again in the same section
of the document (for example, Einstein referring to Albert
Einstein), we recognize it as that entity.

We resolve anaphora in an equally simplistic way. Namely,
we assign each occurrence of he, she, it, her, his, etc. to the
last recognized entity of matching gender. We also recognize
the pattern the <class> as the entity of the document if it
belongs to <class>, for example, the plant in the document
of Broccoli.

Our results in Section 7.5 suggest that, on Wikipedia,
these simple procedures give already a reasonable accuracy.

3.3 Natural language processing
The second step is to decompose document texts into what

we call contexts, that is, sets of words that “belong” to-
gether. The contexts for our example sentence (S) from
above are:

(C1) rhubarb, a plant from the Polygonaceae family

(C2) The usable parts of rhubarb are the medicinally used
roots

(C3) The usable parts of rhubarb are the edible stalks

(C4) however rhubarb leaves are toxic

This will be crucial for the quality of our results, because we
do not want to get rhubarb in our answer set when searching
for plants with edible leaves. Note that we assume here that
the entity recognition and anaphora resolution have already
been done (underlined words). Also note that we do not care
whether our contexts are grammatically correct and form a
readable text. This distinguishes our approach from a line
of research called text simplification [12].

In the following, we will only consider contexts that are
part of a single sentence. Indeed, after anaphora resolution,
it seems that most simple facts are expressed within one and
the same sentence. Our evaluation in Section 7.5 confirms
this assumption.

Our context decomposition consists of two parts, each de-
scribed in the following subsections.

3.3.1 Sentence constituent identification (SCI)
The task of SCI is to identify the basic “building blocks”

of a given sentence. For our purposes various kinds of sub-
clauses and enumeration items will be important, because
they usually contain separate facts that have no direct re-
lationship to the other parts of the sentence. For example,
in our sentence (S) from above, the relative clause a plant
from the Polygonaceae family refers to rhubarb but has noth-
ing to do with the rest of the sentence. Similarly, the two
enumeration items the medicinally used roots and the edible
stalks have nothing to do with each other (except that they
both refer to rhubarb); in particular, rhubarb roots are not
edible and rhubarb stalks are not medicinally used. Finally
the part however its leaves are toxic needs to be considered
separate from the preceding part of the sentence. As will
become clear in the following, we consider these as enumer-
ation items on the top level of the sentence.

Formally, SCI computes a tree with three kinds of nodes:
enumeration (ENUM), sub-clause (SUB), and concatenation
(CONC). The leaves contain parts of the sentence and a
concatenation of the leaves from left to right yields the whole
sentence again. See Figure 3 for the SCI tree of the above
sentence.

ENUM 

ENUM 

CONC 

SUB 
The usable parts 

of rhubarb 

a plant from the 

Polygonaceae family 

are 

the medicinally 

used roots 
the edible stalks 

however rhubarb 

leaves are toxic 

Figure 3: The SCI tree for our example sentence af-
ter anaphora resolution. The head of the sub-clause
is printed in bold.

We construct our SCI trees based on the output of a state-
of-the-art constituent parser. We use SENNA [13], because
of its good trade-off between parse time (around 35ms per
sentence) and result quality (see Section 7.5).

We transform the parse tree using a relatively small set
of hand-crafted rules. Here is a selection of the most im-
portant rules; the complete list consists of only 11 rules but
is omitted here for the sake of brevity. In the following de-
scription when we speak of an NP (noun phrase), VP (verb
phrase), SBAR (subordinate clause), or PP (prepositional
phrase) we refer to nodes in the parse tree with that tag.

(SCI 1) Mark as ENUM each node, for which the children
(excluding punctuation and conjunctions) are either all NP
or all VP.

(SCI 2) Mark as SUB each SBAR. If it starts with a word
from a positive-list (e.g., which or who) define the first NP
on the left as the head of this SUB; this will be used in (SCR
0) below.
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(SCI 3) Mark as SUB each PP starting with a preposition
from a positive-list (e.g., before or while), and all PPs at the
beginning of a sentence. These SUBs have no head.

(SCI 4) Mark as CONC all remaining nodes and contract
away each CONC with only text nodes in its subtree (by
merging the respective text).

As our quality evaluation in Section 7.5 shows, our rules
work reasonably well.

3.3.2 Sentence constituent recombination (SCR)
In SCR we recombine the constituents identified by the

SCI to form our contexts, which will be the units for our
search. Recall that the intuition is to have contexts such
that only those words which “belong” together are in the
same context. SCR recursively computes the following con-
texts from a SCI tree or subtree:

(SCR 0) Take out each subtree labeled SUB. If a head was
defined for it in (SCI 2), add that head as the leftmost child
(but leave it in the SCI tree, too). Then process each such
subtree and the remaining part of the original SCI tree (each
of which then only has ENUM and CONC nodes left) sepa-
rately as follows:

(SCR 1) For a leaf, there is exactly one context: the part of
the sentence stored in that leaf.

(SCR 2a) For an inner node, first recursively compute the
set of contexts for each of its children.

(SCR 2b) If the node is marked ENUM, the set of contexts
for this node is computed as the union of the sets of contexts
of the children.

(SCR 2c) If the node is marked CONC, the set of contexts
for this node is computed as the cross-product of the sets of
contexts of the children.

We remark that once we have the SCI tree, SCR is straight-
forward, and that the time for both SCI + SCR is negligible
compared to the time needed for the full-parse of the sen-
tences.

4. QUERY LANGUAGE
Queries to Broccoli are rooted trees with arcs directed

away from the root. The root is either a class or an instance.
There are two types of arcs: ontology arcs and occurs-with
arcs. Both have a class or instance as source node.

Ontology arcs are labeled by a relation from the ontology.
The two nodes must be classes or instances matching the
source and target type of the relation. The class or instance
at the target node may be the root of another arbitrary tree.

For occurs-with arcs, the target node can be an arbitrary
set of words, prefixes, instances or classes. The instances
or classes may themselves be the root of another arbitrary
query. Example queries are given in Figures 1 and 2.

To give an example of a more complex query: in Figure 1
we could replace the instance node Europe by a class node
Location and add to it an occurs-with arc with the word
equator in its target node. The intention of this query would
be to obtain plants with edible leaves native to regions at or
near the equator.

5. INDEX AND QUERY PROCESSING
The index and query processing of Broccoli are described

in detail in [6]. In this section, we summarize why standard
indexes are not suited for Broccoli and describe the main
idea behind our new index.

There are sophisticated systems for both, full-text search
and search in ontologies. Since our queries combine both
tasks, three ways to answer our queries using those system
come to mind: (1) incorporate ontology information into an
inverted index; (2) incorporate full-text information into a
triple store; (3) use an inverted index for the full-text part
of the query, a triple store for the ontology part of the query,
and then combine the results somehow.

Neither approach is perfectly suited for our use-case. In
a nutshell, approach (1) produces document-centric results
and cannot be used to answer complex queries that involve
join operations. Approach (2) needs a relation (e.g. occurs-
in-context featuring both, words and entities) of the size of
our entire index to make use of the contexts produced in our
contextual sentence decomposition. Efficient queries require
a special purpose index over this relation, which already goes
in the direction of our approach. Finally, approach (3) will
get a list of contexts as a result from the full-text index and
has to derive all entities that occur in those contexts. This
mapping is not trivial to achieve efficiently, especially since
a full mapping from contexts to entities usually does not fit
in memory for large collections. Apart from that, we allow
queries that demand co-occurrence with some entity from a
list that can be the root of another query (e.g. a query for
politicians that are friends with an astronaut who walked
on the moon). This would require a second mapping in the
other direction: from entities to contexts. In summary, the
two problems are: Given a list of contexts C, produce a list
E of entities that occur in those contexts. Given a list of
contexts C and an entity list E, limit C to contexts that
include at least one entity from E.

The main idea behind our new index solves these two
problems. We use what we call context lists instead of stan-
dard inverted lists. The context list for a prefix contains
one index item per occurrence of a word starting with that
prefix, just like the inverted list for that prefix would. But
along with that it also contains one index item for each oc-
currence of an arbitrary entity in the same context as one of
these words. For example, consider the context the usable
parts of rhubarb are its edible stalks, with recognized entities
underlined. And let us assume that we have an inverted list
for each 4-letter prefix. Then the part of the context list
for edib* pertaining to this context (which has id, say, 14)
would be:

edib*:

... C14 C14 C14 ...

... #edible #Rhubarb #Stalk ...

... 1 1 1 ...

... 8 5 9 ...

The numbers in the first row are context ids. The # in the
second row means that not the actual entities (with capital
letters) or words are stored, but rather unique ids for them.
The third row contains the score for each index item. The
fourth row contains the position of the word or entity in
the respective context. The context lists are sorted by con-
text id, and, for equal context ids, by word/entity id, with
entities coming after the words.
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Since entity postings are included in those lists, we can
easily solve the two problems introduced above. Actually,
our index and query processing support many additional
features like excerpt generation, suggestions, prefix search,
search for documents instead of entities or ranges over val-
ues. For details on those features and a detailed description
of the query processing, we again refer the reader to [6].

6. USER INTERFACE
For a convincing proof of concept for our interactive se-

mantic search, we have taken great care to implement a fully
functional and intuitive user interface. In particular, there
is no need for the user to formulate queries in a language
like SPARQL. We claim that any user familiar with full-text
search will learn how to use Broccoli in a short time, simply
by typing a few queries and following the various query sug-
gestions. The user interface is completely written in Java
using the Goole Web Toolkit5.

The introduction and screenshots (Figures 1 and 2) have
already provided a foretaste of the capabilities of our user
interface. Here is a list of its most important further fea-
tures:

(UI 1) Search as you type: New suggestions and results
with every keystroke. Very importantly, Broccoli’s sugges-
tions for words, classes, instances, and relations are context-
sensitive. That is, the displayed suggestions actually lead to
hits, and the more / higher-scored hits they lead to, the
higher they are ranked.

(UI 2) Pre-select of most likely suggestion: Broccoli knows
four kinds of objects: words, classes, instances, and rela-
tions. Depending on where you are in the query construc-
tion, you get suggestions for several of them. A new user
may be overwhelmed to understand the different semantics
of the different boxes. For that reason, after every keystroke
Broccoli highlights the most meaningful suggestion, which
can be selected by simply pressing Return.

(UI 3) Visual query representation: At any time, the current
query is shown as a tree, with a color code for the various
elements that is consistent with the suggestion boxes.

(UI 4) Change of focus / root: A click on any node in the
query tree will change the focus of the query suggestions
to that node. A double-click on any class or instance node
will make that node the root of the tree and re-group and
re-rank the results accordingly.

(UI 5) Full history support: The forward and backward but-
tons of the browser can be used to undo or redo single steps
of the query creation process. Furthermore the current URL
of the interface can always be used to store its current state
or to exchange created queries with others.

(UI 6) Tutorial: Besides some pre-built example queries,
the interface also provides a tutorial mode that shows how
to create a search query step by step.

7. EXPERIMENTS

7.1 Input data
Our text collection is the text from all documents in the

English Wikipedia, obtained via download.wikimedia.org

in January 2013. Some dimensions of this collection: 40 GB

5http://code.google.com/webtoolkit

XML dump, 2.4 billion word occurrences (1.6 billion without
stop-words), 285 million recognized entity occurrences and
200 million sentences which we decompose into 418 million
contexts.

As ontology we use the latest version of YAGO from Oc-
tober 2009. We manually fixed 92 obvious mistakes in the
ontology (for example, the noble prize was a laureate and
hence a person), and added the relation Plant native-in Lo-
cation for demonstration purposes. Altogether our variant
of YAGO contains 2.6 million entities, 19,124 classes, 60 re-
lations, and 26.6 million facts.

7.2 Pre-processing
We use a UIMA6 pipeline to pre-process the Wikipedia

XML. The pipeline includes self-written components to parse
the Wikipedia markup, tokenize text, parse sentences using
SENNA [13], perform entity-recognition and anaphora res-
olution (see section 3.2), and decompose the sentences (see
section 3.3). We want to note that all these components
can easily be exchanged. In principle, this allows Broccoli
to work with any given text collection and ontology.

The full parse with SENNA was scaled out asynchronously
on a cluster of 8 PCs, each equipped with an AMD FX-8150
8-core processor and 16 GB of main memory. A final non-
UIMA component writes the binary index which is kept in
three separate files. The file for the context lists has a size
of 37 GB. The file for the relation lists has a size of 0.5 GB.
And the file for the document excerpts has a size of 276 GB,
which could easily be reduced to 85 GB by eliminating the
redundant and debug information the file currently contains.

7.3 Computing environment
The code for the index building and query processing is

written entirely in C++. The code for the query evalua-
tion is written in Perl, Java, C++ and JavaScript. Our
pre-processing components are written in C++ or Java. All
performance tests were run on a single core of a Dell Pow-
erEdge server with 2 Intel Xeon 2.6 GHz processors, 96 GB
of main memory, and 6x900 GB SAS hard disks configured
as Raid-5.

7.4 Query times
For detailed experiments on query times, we refer to the

paper describing the index behind Broccoli [6]. In said pa-
per, we have evaluated our system on 8,000 queries of differ-
ent complexity and 35,000 suggestions. Therefore we here
omit a detailed breakdown and limit ourselves to the figures
reported in Table 1.

Query set average median 90%ile 99%ile

Hit queries 52ms 23ms 139ms 393ms

Suggestion 19ms 6ms 44ms 193ms

Table 1: Statistics of query times over 8,000 queries
and 35,000 suggestions.

On our collection, 90% of the queries finish within 140ms,
99% within 400ms. Suggestions are even faster. The break-
down in [6] shows that for a combination of Wikipedia and
YAGO, only queries that include text take siginificant time.
Purely ontological queries finish within 2ms on average.

6http://uima.apache.org/
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#FP #FN Precision Recall F1 P@10 R-Prec MAP nDCG

SemSearch
sections 44, 117 92 0.06 0.78 0.09 0.32 0.42 0.44 0.45
sentences 1, 361 119 0.29 0.75 0.35 0.32 0.50 0.49 0.50
contexts 676 139 0.39 0.67 0.43† 0.25 0.52 0.45 0.48

Wikipedia lists
sections 28, 812 354 0.13 0.84 0.21 0.46 0.38 0.33 0.41
sentences 1, 758 266 0.49 0.79 0.58 0.82 0.65 0.59 0.68
contexts 931 392 0.61 0.73 0.64∗ 0.84 0.70 0.57 0.69

TREC
sections 6, 890 19 0.05 0.82 0.08 0.28 0.29 0.29 0.33
sentences 392 38 0.39 0.65 0.37 0.58 0.62 0.46 0.52
contexts 297 36 0.45 0.67 0.46∗ 0.58 0.62 0.46 0.55

Table 2: Sum of false-positives and false-negatives and averages for other measures over all SemSearch,
Wikipedia list and TREC queries for Broccoli when running on sections, sentences or contexts. For contexts,
the results for the SemSearch and Wikipedia list benchmarks can be reproduced using our web application
at http://broccoli.informatik.uni-freiburg.de/repro-corr/ . ∗, † denotes a p-value < 0.02, < 0.003 for the
two-tailed t-test against the sentences baseline.

7.5 Result quality
We performed an extensive quality evaluation using topics

and relevance judgments from several standard benchmark-
ing tasks for entity retrieval: the Yahoo SemSearch 2011
List Search Track [21], the TREC 2009 Entity Track [4] and,
similarly as in [7], a random selection of ten Wikipedia fea-
tured List of ... pages. To allow reproducability we provide
queries and relevance judgments as well as the possibilty to
evaluate (and modify) the queries against a live running sys-
tem for the SemSearch List Track and the Wikipedia lists at
http://broccoli.informatik.uni-freiburg.de/repro-corr/

. The TREC Entity Track queries were used for an in-depth
quality evaluation that does not allow for an easy reproduc-
tion. Therefore we do not provide them in our reproducabil-
ity web application. In the following we first describe each
of the tasks in more detail.

The SemSearch 2011 List Search Track consisted of 50
topics asking for lists of entities in natural language, e.g.
Apollo astronauts who walked on the Moon. The publicly
available results were created by pooling the results of par-
ticipating systems and are partly incomplete. Furthermore,
the task used a subset of the Billion Triple Challenge Linked
Data as collection, and some of the results referenced the
same entity several times, e.g. once in DBPedia and once
in OpenCyc. Therefore, we manually created a new ground
truth consisting of Wikipedia entities. This is possible be-
cause most topics were inspired by Wikipedia lists and can
be answered completely by manual investigation. Three of
the topics did not contain any result entities in Wikipedia,
and we ignored one additional topic because it was too
controversial to answer with certainty (books of the Jewish
canon). This leaves us with 46 topics and a total of 384
corresponding entities in our ground truth7 . The original
relevance judgments only had 42 topics with primary results
and 454 corresponding entities, including many duplicates.

The TREC 2009 Entity Track worked with the ClueWeb09
collection and consisted of 20 topics also asking for lists of
entities in natural language, e.g. Airlines that currently use
Boeing 747 planes, but in addition provided the source en-
tity (Boeing 747 ) and the type of the target entity (organi-
zation). We removed all relevance judgments for pages that
were not contained in the English Wikipedia; this approach

7 available at http://broccoli.informatik.
uni-freiburg.de/repro-corr/

was taken before in [11] as well. This leaves us with 15 topics
and a total of 140 corresponding relevance judgments.

As third benchmark we took a random selection of ten
of Wikipedia’s over 2,400 manually compiled featured en.

wikipedia.org/wiki/List_of_... pages8, e.g. the List of
participating nations at the Winter Olympic Games. Wiki-
pedia lists are manually compiled by humans, but actually
they are answers to semantic queries, and therefore per-
fectly suited for a system like ours. In addition, the featured
Wikipedia lists undergo a review process in the community,
based on, besides other attributes, comprehensiveness. For
our ground truth, we automatically extracted the list of en-
tities from the Wikipedia list pages. This leaves us with
10 topics and a total of 2,367 corresponding entities in our
ground truth7.

For all of these tasks we manually generated queries in our
query language corresponding to the semantics of the topics.
We relied on using the interactive query suggestions of our
user interface, but did not fine-tune our queries towards the
results. An automatic translation from natural language to
our query language is part of future work (see section 8).
We want to stress that our goal is not a direct comparison
to systems that participated in the tasks above. For that,
input, collection and relevance judgments would have to be
perfectly identical. Instead, we want to show that our sys-
tem allows to construct intuitive queries that provide high
quality results for these tasks.

We first evaluated the impact of our context decomposi-
tion from Section 3.3 (contexts) on result quality, by compar-
ing it against two simple baselines: taking each sentence as
one context (sentences) and taking each section as one con-
text (sections). Table 2 shows that compared to sentences,
our contexts decrease the (large) number of false-positives
significantly for all benchmarks. For the TREC benchmark
even the number of false-negatives decreases. This is the
case because our document parser pre-processes Wikipedia
lists by appending each list item to the preceding sentence
(before the SCI+SCR phase). These are the only types of
contexts that cross sentence boundaries and a rare excep-
tion. For the Wikipedia list benchmark we verified that this
technique did not cause any results that are in the lists from
which we created the ground truth. Since the sentence level

8http://en.wikipedia.org/wiki/Wikipedia:Featured_
lists

8

http://broccoli.informatik.uni-freiburg.de/repro-corr/
http://broccoli.informatik.uni-freiburg.de/repro-corr/
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en.wikipedia.org/wiki/List_of_...
en.wikipedia.org/wiki/List_of_...
http://en.wikipedia.org/wiki/Wikipedia:Featured_lists
http://en.wikipedia.org/wiki/Wikipedia:Featured_lists


does not represent a true superset of our contexts we also
evaluated on the section level. We can observe a decrease
in the number of false-negatives (a lot of them due to ran-
dom co-occurrence of query words in a section) which does
not outweigh the drastic increase of the number of false-
positives. Overall, context decomposition results in a signif-
icantly increased precision and F-Measure, which confirms
the positive impact on the user experience that we have ob-
served.

Considering the ranking related measures in Table 2 we
see a varying influence for the context based approach. The
number of cases where ranking quality improves, remains
unchanged or decreases is roughly balanced. This looks sur-
prising, especially since the increase in F-measure is sig-
nificant, but the reason is simple. So far our system uses
simplistic ranks, determined by mere term frequency. We
plan to improve on that in the future; see Section 8. We
want to stress the following though. Most semantic queries,
including all from the TREC and SemSearch benchmark,
have a small set of relevant results. We believe that for such
queries the quality of the result set as a whole is more im-
portant than the ranking within the result set. Still, for the
TREC benchmark, R-precision on contexts is 0.62 and, for
the SemSearch benchmark, mean average precision is 0.45.
The best run from the TREC 2009 Entity Track when re-
stricted to the English Wikipedia had an R-precision of 0.55
as reported in [11, Table 10]. The best result for the Sem-
Search List Search Track was a mean average precision of
0.279 [3]. Again, these results cannot be compared directly,
but they do provide an indication of the quality and poten-
tial of our system.

7.6 Error analysis
To identify areas where our system can be improved we

manually investigated the reasons for the false-positives and
false-negatives when using contexts. We used the TREC
benchmark for this, because it has a reasonable number
of queries and relevance judgments that still allow a costly
manual inspection of the results. We defined the following
error categories. For false-positives: (FP1) a true hit which
was missing from the ground truth; (FP2) the words in the
context have a different meaning than what was intended
by the query; (FP3) due to an error in the ontology ; (FP4)
a mistake in the entity recognition; (FP5) a mistake by the
parser. (FP6) a mistake in our context decomposition. For
false-negatives: (FN1) there seems to be no evidence for this
entity in the Wikipedia based on the query we used. It is
possible that the fact is present but expressed differently,
e.g., by the use of synonyms of our query words; (FN2)
the query elements are spread over two or more sentences;
(FN3) a mistake in the ontology ; (FN4) a mistake in the
entity recognition; (FN5) a mistake by the parser ; (FN6) a
mistake in our context decomposition.

#FP FP1 FP2 FP3 FP4 FP5 FP6

297 55% 11% 5% 12% 16% 1%

#FN FN1 FN2 FN3 FN4 FN5 FN6

36 22% 6% 26% 21% 16% 8%

Table 3: Breakdown of errors by category.

Table 3 provides the percentage of errors in each of these
categories. The high number in FP1 is great news for us:
many entities are missing from the ground truth but were
found by Broccoli. Errors in FN1 occur when full-text search
with our queries on whole Wikipedia documents does not
yield hits, independent from our contexts. Tuning queries
or adding support for synonyms can decrease this num-
ber. FP2 and FN2 comprise the most severe errors. They
contain false-positives that still match all query parts in
the same context but have a different meaning and false-
negatives that are lost because contexts are confined to sen-
tence boundaries. Fortunately, both numbers are quite small.

The errors in categories FP and FN 3-5 depend on im-
plementation details and third-party components. The high
number in FN3 is due to errors in our current ontology,
YAGO. A closer inspection revealed that, although the facts
in YAGO are reasonably accurate, it is vastly incomplete in
many areas (e.g., the acted-in relation contains only one ac-
tor for most movies). Preliminary experiments suggest that
switching to Freebase [10] in the future will solve this and
improve the results considerably (see section 8). To miti-
gate the errors caused by entity recognition and anaphora
resolution (FP4+FN4), a more sophisticated state-of-the-art
approach is easily integrated. Parse errors are harder. As-
suming a perfect constituent parse for every single sentence,
especially those with flawed grammar, is not realistic. Still,
those errors do not expose limits of our approach. We hope
to enable SCI+SCR without a full-parse in the future (see
Section 8). The low number of errors due to our context
decomposition (FP6+FN6) demonstrates that our current
approach (Section 3.3) is already pretty good. Fine-tuning
the way we decompose sentences might decrease this number
even further.

Naturally, an evaluation should not treat entities missing
in the ground-truth in the same way as actual errors. Ta-
ble 4 provides quality measures for our benchmark based
on sentences and contexts under three conditions: (origi-
nal) evaluation based on the original TREC ground-truth;
(+missing) with the entities from FP1 added to the ground
truth; (+correct) with the errors leading to FP and FN 3,4,5
corrected.

F1 P@10 R-Prec MAP

Sentences
original 0.37 0.58 0.62 0.46
+missing 0.55 0.77 0.76 0.60

Contexts
original 0.46 0.58 0.62 0.46
+missing 0.65 0.79 0.77 0.62
+correct 0.86 0.94 0.92 0.85

Table 4: Quality measures on TREC 2009 queries
for three different levels of corrections.

The numbers for +correct show the high potential of our
system and motivate further work correcting the respective
errors. As argued in the discussion after Table 3, many
corrections are easily applied, while some of them remain
hard to correct perfectly.

8. CONCLUSIONS AND FUTURE WORK
We have presented Broccoli, a search engine for the inter-

active exploration of combined text and ontology data. We
have described the index, the natural language processing,
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and the user interface behind Broccoli. And we have pro-
vided reproducible evidence that Broccoli is indeed fast and
gives search results of good quality.

So far, we have implemented all the basic ideas we deemed
necessary to provide a convincing proof of concept. Based
on this work, there are a lot of interesting directions for
future research.

The underlying ontology plays a major role for our system.
By switching from YAGO to Freebase we expect a great im-
provement of the overall quality through a better coverage
of relations and thus proposals and results (see Tables 3 and
4 in the previous section). Our current approaches to entity
recognition and anaphora resolution work well, but it might
be possible to further improve result quality by incorporat-
ing more elaborate state-of-the-art approaches. This would
also allow the system to be more easily applied to other
collections than Wikipedia (our current heuristics rely on
its structure, see Section 3.2). Integrating simple inference
heuristics could help to reduce the number of errors that
are caused by facts that are spread over several sentences. A
high-quality sentence decomposition without the need for an
expensive and error-prone full parse should further increase
result quality. While query times are already low, optimized
query processing and clever caching strategies have the po-
tential to further improve speed. To investigate how to best
approach performance and quality improvements, an eval-
uation of Broccoli on a larger, web-like collection should
provide valuable insights. Automatically transforming nat-
ural language queries into our query language could help
users that are accustomed to keyword queries in construct-
ing their queries. Finally, a user study of our UI and the
whole system is an important next step.
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