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Task Distributional Similarity Features

Determine “topics” of queries which can be one or more of 7 classes [1]: o L o
P G 1] Utilize distributional similarity of words to create robust features

VIDEO, GAME, NOVEL, OTHER, ... = multi-label classification

/ . SR N S vt . Click - £ Large amount of unlabeled data (queries labeled “UNKNOWN”) )
* Labels for 33k queries are provided | . ___ GAME ___ i Query 1 "(Title 1 * Alot of characters/words occur only few times in labeled data
* Queries are structured in search ' VIDEO, NOVEL | Query 2 o Title 2 . (hard to learn from) )
sessions (from query log) 'r=\7I=DI=E(=)=I<I(=)</I=EE:' (=
* Title of clicked link of query is ;:::::’:::::::' Query 2 Title 3 @
. . I E | 1 > . e N
\_ provided (if any) J o GAME____ ' (Query Title 4 * Learn vector for each word representing its semantic
* Intuition: a word often appearing close to, e.g., “video words”
_inunlabeled data is probably also related to video )
/Learning word vectors \

 Use all text of provided data (labeled and unlabeled, queries and clicked titles)

 Replace frequent n-grams (top 10k n-grams according to maximum likelihood
ratio [4, chapter 5.4.3] ) by their concatenation

e Use Word2Vec [3] to learn real-valued vector for each word

 Train two models with different parameters (see below):

k one for title word vectors, one for query word vectors j

| wv wv wv, o _____
Query 1: w, w, ! 2 3 '~ >

' wv,: the learned

' vector for word x

 Representation is two-fielded document: query and concatenation of all clicked titles\
* Introduce stop markers between clicks and at start/end for better features (n-grams)
e Only small number of queries without clicks: 170 w/o, 5k with fewer than

- resonable representation

Title 1: w, w,

 Unlabeled queries (labeled “UNKNOWN?”) in provided data are ignored (incorporated e N
in other features, see box on the right) Combining word vectors
* Information about queries in same session is lost (incorporated * For aquery with words Q and associated title text with words T, simple vector
K in other features, see box on bottom-right) / addition is performed to obtain a real-valued query vector vg and a title vector vt
. oo . * These vectors can directly be used as features of a query and/or its titles y
Text Classification Features
Treat problem of query intent classification as text classification
Features from text \
. Unigram term counts
. N-grams counts of length 2 and 3 with minimum frequency 2 and 3, respectively
. To account for document length: use BM-25 [2] weighting (k=2, b=0.75) Word2Vec parameters
. Note: query and clicked titles fields are seperate, i.e. an occurrence * Title vectors model: window=10, #dimensions=2000, min-count=5
N of the same term in a query and a title corresponds to different features Y * Query vectors model: window=5, #dimensions=1000, min-count=1
Stacking Classifier Additional Features
Train different base classifiers and combine their output using stacking >ession Features . .
 For each query, count labels of other queries in same session
/~ .. ~ . N  But: many queries don‘t have other labeled queries in same session
* Train different base classifiers on different features > Weak base classifier, still valuable in ensemble
 Alllearned base classifiers output probabilities and use Binary Relevance
(“one-vs-all”) for multi-label classification Query Click Graph Features
 Combine predictions of base classifiers by training a final logistic regression classifier * Create graph G with unique queries Q and titles T as nodes
\_ (12-regularized) on their outputs: a form of Feature Weighted Linear Stacking [5] ) « There is an edge e between g and t iff t was click for g
 The set of labels of a title t = set of labels of connected queries
4 Stacking Classifier * Foreach query c.o.unt labels .of.direct.ly connected ttitles
- Weak base classifier, only miniscule improvement in ensemble
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eatures U0 Additional Information
i
m, o v v Learning and Model Selection
1,1,1 1,7,n b,7,n . .. . .
. . . . . - . . * Split labeled training data into TRAIN and DEV (very conservative 50/50)
- Pu s | v JPuT ) Puty | « | Po Pus M | o | P | Pay | « | P o for model/feature selection
" \\ / /// \\ //// * Train final classifiers train on TRAIN + DEV
- A N - - - * For training stacking classifier: train base classifiers with 20-fold cross-validation,
ﬁ: ol o ﬁ:l o0, | o | pes i.e. in turn train on 19/20 apply on 1/20 held-out examples, use predicted probabilities
— — on held-out examples to train stacking classifier
. Base Classifier 1 ) . Base Classifier b ) « Best base classifier (logistic regression + text classification features)
achieved 91.52 % on leaderboard; ensemble improved on that by (only) 0.7%
ﬂbove \
* Stacking Classifier for b base classifiers and n meta-features Possible Improvements (not followed due to time constraints)
(and 7 classes) for a single example « Automatic model selection for ensemble (i.e. which base classifiers to use)
 The input of the stacking classifier are products of each meta-feature extracted * Deeper investigation of meta-features
from the example and each base classifier output (“virtual features” vf, , ;to vf, ;) « Better session and query click graph features
* For functions m(x) that extract meta-feature j and f, ;(x) that correspond
to the output for class i of classifier b on example x: v/, ; = f,.(x)m;(x) Things That Did Not Work (but should or might)
* Additionally, original output probabilities are retained e Multi-label classifiers addressing label correlation
by adding an artificial meta-feature with value 1 j « Applying text segmentation approaches instead of using n-grams (e.g. Morfessor)
Meta Features ) /Base Classifiers )
e  #of query text—classiﬁcat?on features unigram . Logistic Regression L2-regularized FO r q u eStiO ns: h aussmann @ | nfo rm ati k un i_frei b u rg. d e
 #of query text-classification features n-gram * Naive Bayes
* #of query text-classification features in total  K-Nearest Neighbors
\' EacI?of t¥1e above divided by their average in training set/ \° Random Foresgts Y REfe renCES
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