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ABSTRACT

In this paper we present a novel index data structure tai-
lored towards semantic full-text search. Semantic full-text
search, as we call it, deeply integrates keyword-based full-
text search with structured search in ontologies. Queries
are SPARQL-like, with additional relations for specifying
word-entity co-occurrences. In order to build such queries
the user needs to be guided. We believe that incremen-
tal query construction with context-sensitive suggestions in
every step serves that purpose well. Our index has to an-
swer queries and provide such suggestions in real time. We
achieve this through a novel kind of posting lists and query
processing, avoiding very long (intermediate) result lists and
expensive (non-local) operations on these lists. In an evalu-
ation of 8000 queries on the full English Wikipedia (40 GB
XML dump) and the YAGO ontology (26.6 million facts),
we achieve average query and suggestion times of around
150ms.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Context
Analysis and Indexing—Indexing methods
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1. INTRODUCTION
Classic full-text search is very strong for document re-

trieval. The query armstrong moon typed into a web search
engine will retrieve the most relevant documents about Neil
Armstrong on the Moon. The query astronauts who walked
on the moon will retrieve documents that match those key-
words, hopefully leading the user to some kind of hand-
compiled list of astronauts. However, the user that for-
mulated that query probably was not looking for a list of
documents but for a list of astronauts. Improving search
by going beyond purely syntactic interpretation of queries
is a prevalent idea. There are many different ways to add
semantics to search and no approach has yet proven itself as
the only way to go.

Figure 1 shows a screenshot of our system that realizes
what we call semantic full-text search. The architecture of
the system behind Figure 1 is described in [4].

The query for astronauts that walked on the moon and
are born no later than 1930 is answered using a combina-
tion of the YAGO [15] ontology (a structured collection of
facts about entities), and the English Wikipedia (unstruc-
tured full-text, in which we identify references to entities
from the ontology). The information that Neil Armstrong
and Buzz Aldrin are astronauts and their dates of birth are
contained in the ontology. The information which astronauts
have been on the moon is not contained in the ontology but
expressed in the text of various Wikipedia articles.

Ontologies usually consist of a set of fact triples and are
typically searched using SPARQL [14] queries. Semantic
full-text search integrates SPARQL-style ontology search and
full-text search in a deep way. The index presented in this
paper is specifically tailored towards this kind of search.

Constructing a query like the one in the screenshot is not
trivial. Although the graphical representation is easier to
understand than plain SPARQL, a user will typically not
know the correct names of entities or relations. Our system
relies on incremental query construction, where the user is
guided by context-sensitive suggestions in every step. Apart
from that, we want to generate expressive excerpts. The
screenshot provides comprehensive evidence for why each
entity is returned as a hit.

Neither of those features is trivial to provide. In particu-
lar, the classic inverted index is less than ideal for semantic
full-text search for several reasons. First, facts from the on-
tology have to be integrated into the index. It is possible to
add classes of entities or a limited set of relations. However,
it is hard to determine what to add and the index tends to
become very big. Queries with chains of relations could not



Words

Buzz Aldrin (34)

Neil Armstrong (58)

Pete Conrad (23)

Instances:

1 - 3 of 3

Traveler (7)

Spaceflight Person (8)

Person (6)

Classes:

1 - 3 of 28

Neil Armstrong

Ontology: Neil Armstrong

Neil Armstrong: is an astronaut; born on date August 5, 1930.

Document: Kevin Foster (Entertainer)

Foster commented: “Now I know how Neil Armstrong felt when he

walked on the moon.”

Buzz Aldrin

Ontology: Buzz Aldrin

Buzz Aldrin: is an astronaut; born on date January 20, 1930.

Document: Upper Montclaire, New Jersey

Notable current and former residents of Upper Montclaire include:

Buzz Aldrin, Astronaut, second man to walk on the moon.

Your Query:

Astronaut

occurs-with walk* moon

born-on-date

Hits: 1 - 2 of 3

<= 1930

occurs-with <Anything>

Relations:

1 - 3 of 7

Is-citizen-of <Country>

Born-in <Location>

(3)

(3)

type here to extend your query …

Figure 1: A screenshot of our example query. The box on the top (right) visualizes the current query as
a tree. The large box below shows the hits grouped by instances that match the query root and ranked by
relevance. Comprehensive evidence for each hit is provided. For matches in the text corpus, a whole sentence
is shown, with parts outside of the matching context grayed out. On the left, there are suggestions for classes,
instances and relations w.r.t. the current query. Suggested classes are parent classes of astronaut, relations
and instances are context sensitive w.r.t. the current query. There are no word suggestions (yet), because
no input has been entered into the field on the top left (yet).

be answered at all. Relational databases or triple stores re-
sort to join operations to answer complex queries over struc-
tured data. Inverted indexes do not support joins out of the
box and adding them quickly compromises response times.
Second, context-sensitive suggestions, which we found cru-
cial for query construction above, are not supported by stan-
dard inverted indexes. Finally, returning entity lists with in-
formation from multiple documents combined for each hit,
is not directly supported either. In Section 4 we examine
the limitations of semantic full-text search with an inverted
index in more detail.
The index presented in this paper supports all of the

above-mentioned features efficiently. It is designed such that
sorting of and join operations on entire posting lists are
avoided altogether. On top of that, we construct posting
lists not for words but for prefixes, which enables context-
sensitive keyword suggestions similar as in [7].
The remainder of this paper is organized as follows: In

Section 2, we provide an overview over other systems that
combine full-text and ontology search. In Section 3, we de-
fine the query language of semantic full-text search and all
the features we support. In Section 4, we elaborate on how
state-of-the-art data structures for full-text search and on-
tology search can be used for semantic full-text search, and
the limitation of this approach. In Section 5, we present
our new index data structure in detail. In Section 6, we ex-
plain how queries are processed using this index. Section 7
provides the details of our experimental evaluation.

More details about our evaluation (including currently a
demo of our semantic search) can be found under
http://ad.informatik.uni-freiburg.de/publications.

2. RELATED WORK
Semantic full-text search is related to many lines of re-

search. However, nearly all pieces of work that deal with
semantic search solve different problems. This includes com-
plex tasks where retrieval speed is not an issue and there-
fore only little relation to the content of this paper exists.
In the following, we concentrate on previous work that em-
ploys non-standard index data structures for efficient query
processing.

ESTER [5] supports semantic full-text queries, using the
HYB index for fast prefix search and completion [7]. In
a nutshell, words like person:NeilArmstrong in combination
with prefix queries like person:* are used. ESTER is fast
for simple queries, but slow for others, in particular, when
join operations on large index lists are involved as happens
for person:*. Apart from that, results are document-centric.

Ad-hoc entity retrieval [13] is an alternative approach to
combine information from ontologies and full text. Passages
of text are explicitly associated with entities from the on-
tology as part of the input. For example, DBpedia [2] con-
tains textual abstracts and descriptions for many entities.
Artificial documents are created for each entity, containing
all the text associated with that entity. Information about
which words in these texts are related and which are not is
not modeled. In [8], the authors describe a system based

http://ad.informatik.uni-freiburg.de/publications


on MG4J1, a fielded inverted index. Apart from ranking,
the search process does not differ much from classic full-text
search and hence systems are fast. One drawback of the
ad-hoc ER systems we know of is that precise, factual in-
formation from ontologies is lost or watered down because
it is mixed with unstructured, possibly vague text. Addi-
tionally, complex queries, e.g. a query for entertainers that
are friends with an astronaut who walked on the moon, can-
not be answered properly with a model that associates each
entity with a bag of words.
Concept Search [10] extends keyword-based full-text search

by semantics. Queries that contain names of concepts should
also match more specific noun phrases in documents. For
example, the keywords big animal should match documents
with occurrences of the phrase huge dog. This overall goal
is different from ours. The authors plan to improve full-text
search and are not interested in retrieving lists of entities.
Only abstract classes, like animal, are taken into considera-
tion. Class instances like concrete persons or movies are not
considered, and neither are relations from ontologies.
GoNTogle [9] is a system that performs hybrid search over

an ontology and text. While this general description would
also suit our system, the actual use case is, again, different.
The authors assume an ontology with statements about their
text documents. A core aspect of their work concerns auto-
matic extension of that structured data. The search process
is realized using a standard Lucene index. There is no focus
on entity occurrences in the text and the problem is very dif-
ferent from semantic full-text search. For example, a typical
query is ”find documents relevant to XML”.
In [17], the authors present a system that is supposed to

efficiently deal with queries over structured data that con-
tains relations to text documents. For the full-text part the
authors build inverted indexes using Lucene and implement
join operations with the structured data stored in a database
system. In comparison to the example from Figure 1, there
is no way facts about Neil Armstrong can be obtained from
a document about Kevin Foster (Entertainer). Apart from
that, the system is not able to distinguish documents that
contain the word walk and the word moon independently
from documents where those words occur within the same
semantic context.
There are several extensions of SPARQL by full-text search,

but none that we know of that deeply integrates the two. A
common extension is the ability to specify an entity via key-
words contained in its name (for example, entities matching
obama). This is provided by several systems, e.g., 4store2

or Jena LARQ3. A more elaborate extension is to allow the
association of arbitrary text nodes with entities. Entities
can then be restricted by matching keywords in that text.
The system [17], discussed in the previous paragraph, falls in
that category. Semantic full-text search demands a deeper
integration. In Section 4, we discuss means to extend such
approaches further in order to provide a deep integration for
semantic full-text search.

1http://mg4j.di.unimi.it/
2http://www.4store.org/trac/wiki/TextIndexing
3http://jena.sourceforge.net/ARQ/lucene-arq.html

3. QUERY LANGUAGE AND FEATURES
In Figure 1, the user interface presents queries as trees.

Those trees are already close to the queries that are pro-
cessed in the background, but syntactic sugar hides some
important aspects. In fact, queries are similar to SPARQL
with the following restrictions and extensions: Queries have
to be trees - cycles are not allowed, variables cannot be used
for predicates, and we add four special relations. In particu-
lar, we add a relation occurs-with, a relation has-occurrence-
of and its reversed counterpart occurs-in. Those three rela-
tions establish the integration of full-text search. The first
one is used to specify co-occurrence of entities with words
or entities, the other two are used for queries involving doc-
uments. Two example queries (on a hypothetical collection
where documents = patents) are document has-occurrence-
of class:Protein and protein occurs-in document:Patent123.
We also add a special relation in-range that is used for val-
ues.

Recall our query for astronauts that walked on the moon
that are born no later than 1930 and Figure 1 for its graph-
ical representation in the user interface. The corresponding
query consists of triples, organized in the following way:

$1 is-a Astronaut;
$1 occurs-with walk* moon;
$1 born-on-date $2;
$2 in-range date:00000000-date:19309999

Note that each variable identifies a node in the query tree as
the UI presents it. One variable has to be explicitly specified
as root. If a triple does not have a variable in first or third
place, there will be an element from the ontology for regular
relations. The special relations, which model occurrences in
the full-text, have keywords and/or variables on their right-
hand side and support operators for OR, NOT and prefix
search.

Co-occurrence is always demanded within a context and
not within an entire document. Those contexts are bags of
words that semantically belong together. They are obtained
through the natural language processing described in [4] and
[6] and are slightly more restrictive than sentences. An ex-
ample can be found in the excerpts in the screenshot (Figure
1) from above. For the sake of the index discussed in this
paper and all ideas behind the index, it is fine to think of
contexts as entire sentences. Either way, the index has to
deal with a large number of small documents.

The screenshot depicts two other key requirements to-
wards our index: context-sensitive suggestions and com-
prehensive excerpts. We cannot hope to answer semantic
queries with perfect precision. Hence, it is important to
provide full evidence for why a particular hit was returned
and the index has to be able to generate them without com-
promising query times.

Formulating SPARQL queries requires knowledge of the
ontology and the exact names used for relations and entities.
This can be overcome if queries are constructed incremen-
tally and guided by suggestions. Suggestions are context-
sensitive and will, if added to the query, produce queries
with non-empty results. If there are many suggestions, the
user can provide a prefix to filter them. Rather than only
filtering by actual prefixes, we also take synonyms (athlete
vs sports person) into account. See Section 6.4 for how this
is done.



4. LIMITATIONS OF USING KNOWN

INDEX DATA STRUCTURES
In this section, we explore how known data structures for

full-text search (inverted index) and ontology search (triple
stores) can be used, combined, or modified to realize seman-
tic full-text search, and the limitations of this approach. We
look at three lines of approach: (1) incorporate ontology in-
formation into an inverted index; (2) incorporate full-text
information into a triple store; (3) use an inverted index for
the full-text part of the query, a triple store for the ontology
part of the query, and then combine the results somehow.
Our approach falls in the third category.
Approach (1) can be realized with different levels of so-

phistication. The easiest possibility is as simple as adding
additional index items for each recognized reference to an
entity in the given text. If for each such reference all classes
the respective entity belongs to are added to the index, sim-
ple but frequent queries of the pattern class occurs-with
word(s) can be answered. The drawbacks include index
blowup, which may be acceptable depending on the number
of classes and very long inverted lists for classes like per-
son. More severely, queries involving more structured data
than only classes, like our running example of astronauts
that walked on the moon and are born no later than 1930,
cannot be answered using this approach. In order to answer
such queries, one can either add all relevant facts together
with each recognized entity reference (index size explodes
when the domain includes many relevant facts) or resort to
join operations like ESTER [5], which has been described in
Section 2. For queries involving big classes, like person, and
sizable collections, join operations are too slow to provide
an interactive user experience. Finally, complex queries that
involve entire sub-queries, e.g. entertainers that are friends
with one of the astronauts from our example, need to either
(E) access an inverted list of all entity occurrences or (M)
merge inverted lists for each of the entities in the sub-query
result. We have found (E) to be far superior to (M), and
have implemented this approach as one of our baselines in
Section 7. Using this baseline, all semantic queries are sig-
nificantly slower than with our new approach, ontological
queries cannot be answered at all, and complex queries are
unacceptably slow.
Approach (2) consists of adding words as entities to the

ontology. Adding a triple for each word occurs-with non-
word-entity (in the same document) is not an option: We
want to distinguish an entity that somewhere occurs with
the word moon and somewhere else with the word walk,
from one that occurs with both of them in the same con-
text. Hence, we have to add contexts to the ontology and
a relation like occurs-in-context. First of all, the number
of triples explodes. More importantly, queries would still
take long to answer because they can reach over the entire
left- and the right-hand-side of this occurs-in-context rela-
tion. An obvious optimization is to split this relation into
word-occurs-in-context and entity-occurs-in-context, since it
is usually clear from the query where entities and where mere
keywords are involved. Still, the relations remain huge and
entity-occurs-in-context has to be processed entirely. In Sec-
tion 7, we compare our index against a highly-performant
triple store using this approach.
For approach (3), it is important to note that semantic

full-text queries cannot be easily split into two parts and

combined in the end. For less complex queries, such a com-
bination is possible. [11] is a system based on this approach.
Query times in their online demo4 are 10 seconds and beyond
for most queries. This fortifies that any efficient combination
is not trivial.

For fully supporting semantic full-text search, the com-
bination has to happen at potentially several points during
the query processing. Consider the query for entertainers
that are friends with one of the astronauts from our exam-
ple query and that the fact about friendship is retrieved from
the text and not part of our ontology. There is no way to
process the full-text and ontology part independently and
afterwards combine the results. How such a query is solved
in detail is part of what we describe in Section 6.2.

Now consider an arbitrary point in the query processing,
where results from a full-text query and an ontology query
have to be combined. The result for the full-text query is a
list C of context (sentence) ids. The result for the ontology
query is a list E of entity ids. Depending on the query, these
have to be combined in two ways: (i) compute all entities
in contexts from C that also contain an entity from E; (ii)
compute the subset of those entities in E that occur in C.
A map from context ids to entity ids is required. This is
a huge map. It can either be represented as ”un-inverted”
index lists for each context or always be kept in memory
if there is sufficient space. In Section 7 we examine both
variants. Since neither is fully satisfactory, we propose a
novel index layout that includes the necessary portion of
this mapping within its inverted lists.

5. THE INDEX
The new index is a joint index over ontologies and text.

Queries can ask for complex combinations of information
from both, as explained in Section 3. We distinguish be-
tween two kinds of lists: lists containing text postings (for
words or occurrences of entities), which we call context lists,
and lists containing data from ontology relations. In the fol-
lowing, we describe both kinds of lists. How these lists are
used to answer queries is described in Section 6.

5.1 Context lists
Our input is a list of postings. Postings are 4-tuples con-

sisting of a word or entity, a context id, a score and a posi-
tion. Our new index is based on two key ideas.

The first idea is taken from [7]: use inverted lists for pre-
fixes instead of words. This enables fast prefix search and
suggestions for words to use in queries. The second idea is
the main idea behind our new index. We want to solve the
problem introduced in Section 4, approach (3). Therefore,
we use what we call context lists instead of usual inverted
lists.

The context list for a prefix contains one index item per
occurrence of a word starting with that prefix, just like the
inverted list for that prefix would. But along with that it also
contains one index item for each occurrence of an entity in
the same context as one of these words. Similar to prefixes,
we also store such a list for each entity in the context. This
helps answering queries that demand co-occurrence with an
entity and no word at all.

For example, consider the context: Neil Armstrong walked
on the Moon, with recognized entity references underlined.

4http://dbpedia.neofonie.de/browse/



Let us assume that we have an inverted list for each 4-letter
prefix. Then the part of the context list for walk* pertaining
to this context (which has id, say, 30) would be:

... C30 C30 C30 ...

... #walk #Moon #Neil Armstrong ...

... 1 1 1 ...

... 2 5 1 ...

The numbers in the first row are context ids. The # in the
second row means that not the actual entities (capitalized)
or words (all lower case) are stored, but rather unique ids
for them. The third row contains the score for each index
item. The fourth row contains the position of the word or
entity in the respective context.
The context lists are sorted by context id, and, for equal

context ids, by word/entity id. We ensure that entity ids are
always larger than word ids by setting the most significant
bit for them. This ordering is used in operations during
query processing (see Section 6).
Entries for context 30 will also occur in the other lists

for, say, moon* or arms*. Each of them contains all entity
postings (two in this example) and hence this is an index
blowup by the average number of entities per context. For
the English Wikipedia5, this leads to an overall factor of
1.88 (88% in addition), which is acceptable. Note that we
benefit from the small context-documents. The smaller our
documents, the lower the average number of entity occur-
rences and hence the lower the blowup factor. If we create a
single context out of each sentence, the factor is 1.93, which
is a bit higher but still acceptable.
In addition to the actual index, we also produce a mapping

from context id to documents. Since each original document
comprises a range of context ids, this mapping is trivial to
produce and can be used in queries involving documents (see
Section 6) as entities of their own.

5.2 Compression
Written to disk, each list is split into separate lists for word

ids, context ids, scores and positions. Each individual list is
compressed as follows: Word and score lists are frequency-
encoded (i.e. the most frequent element in that particular
list is represented by a 0, the second most frequent one by
1, and so on). Context lists are gap-encoded, position lists
are left unchanged. In order to compress those lists, we use
Simple8b from [1] which offers very fast decompression at
the price of a slightly non-optimal compression ratio.
Simple8b performs well if elements inside a codeword are

of roughly equal size. However, our lists have quite large
gaps (because contexts or sentences are very short docu-
ments), followed by a number of zero-sized gaps for the en-
tity postings within that lists. Therefore we have added the
following optimization. Instead of encoding context ids as
one list of gaps, we encode it as two: One list of non-zero
gaps, and a second list of the same size that contains the
number of zeros following each non-zero gap. This opti-
mization has reduced the size (see Section 7 for details on
our collection) needed for context lists from 4.4 GB to 3.2
GB. For all lists combined our index still requires 12 GB.
An entropy-optimal encoding of our lists would require 7.8

5Entity recognition works well on that corpus and includes
resolution of anaphora like he, his, etc.

GB. This is the price we pay for a very fast decompression,
which is important for interactive query times.

In total, that is including list offsets and codebooks for
restoring frequency encoded lists, our index file has a size of
13.5 GB.

5.3 Relations
Relations are stored in the straightforward way, with one

index list per relation. For example, for the relation born-
on-date:

... #Neil Armstrong #Richie Ginther #Abbey Lincoln ...

... #date:19300805 #date:19300805 #date:19300806 ...

... 1 1 1 ...

Again, the # means that ids are stored, not the actual en-
tity names. The third row are the scores, which are all 1 in
our current implementation. The list is sorted by the second
row, that is, by the target entity ids of the relation and by
source entity ids for equal targets. Since queries may use
a relation in both directions, we also store the reverse for
each relation separately (with rows 1 and 2 switched, and
then again sorted by the ids from the second row). Techni-
cally, this is just another relation, for example, born-on-date
(reversed).

For the big is-a relation, we store additional offsets that
allow accessing the parts for a single right-hand side directly.
After all, is-a is usually accessed with a single class. Instead
of reading the whole relation, we can read exactly those
entries that we need. This case also benefits from the fact
that elements with equal target entity are sorted by source
entity. Since we look at elements for only one specific target
entity, we can directly read the entity list for the class we
are looking for.

Values

Values (e.g., dates like in the example query, or integers or
floats) are translated into a string representation such that
the lexicographical ordering corresponds to the actual value
order. We achieve this in the usual way, by concatenating
a fixed-length mantissa and exponent. Hence, the way rela-
tions with values are ordered in our index is well suited for
range queries.

Additional Features

In addition to the relations that are actually part of the
used ontology, we create an artificial relation has-relations
(between entities and relation names). It is used for sug-
gesting relations sensitive to the query tree constructed so
far (see Section 6.4).

Note that we can choose to make every document an en-
tity, too. When documents are entities, they can occur in
relations. This enables faceted search or search over ontolo-
gies that include relations to text documents. For example,
queries like patent documents of company X with occurrences
of protein Y are made possible this way. The only differ-
ence lies in query processing and the treatment of special
relations occurs-with and has-occurrence-of as outlined in
Section 6.

6. QUERY PROCESSING
In the following description of our query processing, we fo-

cus on the general algorithm and how our index and query



language come together. Standard list operations like inter-
section or sub-sequence extraction (which we call filtering
below) are implemented in the straightforward way.

6.1 Caching
In the previous section, we have seen that queries are com-

posed of triples. Internally, we represent each query as a tree
as depicted in Figure 2.

$1 

is-a 

born-on-date 

occurs-with 

occurs-with 

Astronaut 

walk* moon 

$2 
in-range 0000/00/00 – 

31/12/1930 

friend $3 
is-a 

Scientist 

Figure 2: Query processing of an extended version
of our example query. Nodes in this tree represent
spots where subtree results can be computed inde-
pendently and cached.

Subtrees can re-occur across queries. All intermediate re-
sults are stored in a least-recently-used (LRU) cache. The
cache is implemented in the trivial way with doubly linked
lists and a hash map for lookups. The LRU functionality of
the cache will take care that important, recurring subtrees
are kept, while uncommon subtress are dropped.
The other cache is responsible for keeping full-text query

results so that longer queries can be filtered from shorter
ones. This is particularly useful when suggesting words on
each keystroke (see Section 6.4). We use the same cache
implementation for this cache.

6.2 Result Computation
Recall Figure 2 and that our queries are trees. In the

following, we describe how each part of a query is computed
when missing from the cache. If the cache is totally empty,
this means we process a query tree recursively in a bottom-
up fashion.

Variable nodes

(QP 1) Let E1, . . . , Em be the entity lists for each subtree
below the current node. The result list for this node is then
the intersection of the E1, . . . , Em, where the scores of index
items with the same entity id are simply summed up.

Ontology arcs

(QP 2) For each ontology arc, compute the following sorted
list of entities, where R denotes the relation of the arc:

(QP 2.1) For the target node t of the arc (this node can be
the root of an arbitrary query again), recursively compute
the result Et, which is a sorted list of entity ids with scores.

(QP 2.2) Fetch the index list IR for the relation R, which is
sorted by target entity; see Section 5.3.

(QP 2.3) Compute the list ER of all entities x such that
(x, y) ∈ R for some y ∈ Et, via a straightforward intersection

of IR with Et. Since IR is sorted by target entity id, this
intersection can be computed efficiently in linear time. The
list ER is used for excerpt generation later (see Section 6.3)
and stored along with the subtree’s result in the cache.

Although each is-a arc could be processed like an ordinary
ontology arc, we can make use of their particularity. They
always have a fixed class name as target. For this relation,
instead of steps (QP 2.2) and (QP 2.3), directly read ER

from the index file. Remember that we stored additional
offsets for that purpose as described in Section 5.3.

For each equals arc, lookup the entity id and use this as the
only element in ER.

Occurs-with arcs

(QP 3) For the target node of the arc, letW =< w1, . . . , wk >

be the sequence of words, prefixes or disjunctions of words
and prefixes that occur in that node without negation, and
accordinglyWn for those with negation. Let V = {v1, . . . , vℓ}
be the set of variables in the target node. For each occurs-
with arc then compute the following sorted list of entities.

(QP 3.1) For each vi (which can be the root of an arbitrary
query again) recursively compute its result Ei, which is a
sorted list of entities.

(QP 3.2) For W compute a context list C.

(QP 3.2.1) Search the full-text cache (see below) for the
longest prefix of W . If such a prefix exists, take its result
Cprefix and extend it. If not, start with the context list for
w1 and extend this one.

(QP 3.2.2) For a fresh wj , compute its context list Cwj as
follows: In our index, we have a context list for each k-
letter prefix, for some fixed k ≥ 1. Let I be the context
list for the length-k prefix p of wj , or, if wj has length < k,
for wj .

6 Scan over I and for each context, write all index
items matching wj (whole-word or prefix match, depending
on what was specified in the query) to Cwj , and, if at least
one item matches, append all entity index items from that
context, too.7 If wj is a disjunction of multiple words or
prefixes, compute each disjunct wj1, . . . , wju accordingly. Cj

is then simply the union of all Cwj1, . . . , Cwju.

(QP 3.2.3) For each wj that is a completion of an existing
wi with context list Cwi, compute its context list Cwj as
follows: Let I ← Cwi and proceed accordingly to step 3.2.1.
Hence, we avoid reading the index list from file and filter
from shorter lists.

(QP 3.2.4) Extend a sequence with last element wn and
context list Cn by another element wn+1 with context list
Cwn+1 in the following way: Intersect the Cn with Cwn+1,
such that the result list Cn+1 contains all index items (c, e)
where c is a context id that occurs in Cn and Cwn+1, and
e is an entity or word that occurs in context c and is an
element of one of the two lists. Since the Cn and Cwn+1 are
sorted by context ids, this can be computed in time linear
to the total number of index items in the Cn + Cwn+1.

6Words of length < k get a context list on their own, and
there are only single-word suggestions for prefixes of length
< k.
7If there is no index list for a prefix of w, this means that
the index items for w are contained in several index lists.
In that case we could fetch all index lists I ′p where p′ is a
prefix of w, and merge them. This is an expensive operation,
however. Therefore we do not allow prefixes in our queries
which are shorter than the prefixes from our index lists.



(QP 3.3) For each wn
j from Wn compute a context list Cn

j .
Subtract each Cn

j from C to obtain C′.

(QP 3.4) Compute a subset C′′ from C′ by keeping only
those index items from C′ with a context id such that the
context contains at least one entity from each of theE1, . . . , Eℓ

computed in Step 3.1. This can be done in time linear in
|C′| + |E1| + · · · + |Eℓ|, by temporarily storing each Ei in
a hash map or bit-vector. The list C′′ is used for excerpt
generation later (see Section 6.3) and stored along with the
subtree’s result in the cache.

(QP 3.5) Extract all entities from C′′, aggregate the scores of
all postings with the same id using summation and produce
a result list that is sorted by entity id.

Has-occurrence-of arcs

(QP 4) Process each has-occurrence-of arc just like an occurs-
with arc to obtain C′′ (steps 3.1 through 3.4). Use the
context-document mapping to obtain a list of documents
from C′′. Sum up scores of all postings for contexts that be-
long to the same document. Since contexts are grouped by
document and document ids are distributed the same way
context ids are, the resulting entity list (where each entity
stands for a document) is already sorted by entity id.

Occurs-in arcs

(QP 5) Process each occurs-in arc according to steps 3.1 -
3.3 and 3.5 of the processing of an occurs-with arc. Step
3.4, however, is different. Compute a subset C′′ from C′ by
keeping only those index items from C′ with a context id
such that the context belongs to at least one document rep-
resented by an entity from each of the E1, . . . , Eℓ computed
in Step 3.1. This can be computed in linear time because
of the correspondence of the orderings of context ids and
document ids.

In-Range arcs

(QP 6) For each in-range arc compute the following sorted
list of entities, where R denotes the relation of the arc:

(QP 6.1) Fetch the index list IR for the relation R, which is
sorted by target entity; see Section 5.3.

(QP 6.2) At first, convert both boundaries to our repre-
sentations of values of the given type. This representation
has a lexicographical ordering that corresponds to the log-
ical ordering of the values. Get the corresponding entity
ids that follow the same ordering. Lookup the lower and
upper bound for the range in IR. Since IR is sorted by tar-
get entity, we can look them up in logarithmic time using
binary search. (QP 6.3) Take the left-hand-side from the
range identified in IR and sort it by entity id.

6.3 Excerpts
The query processing described above yields entity lists

with scores. We have argued that evidence for entities in
the result is a necessity and that we need to produce proper
excerpts for them. We only need as many as shown in the UI
(which can demand more excerpts when needed). Usually
this means that we produce excerpts for less than 10 entities
at a time.
We assume that queries are fully processed and present in

the cache as described in Section 6.2. Let the result entity
list be E. For each chosen entity e ∈ E we then produce its
excerpts using the following recursive algorithm.

(QPE 1) For each variable node, take the union of all ex-
cerpts produced for subtrees.

(QPE 2) For each ontology arc, generate the following ex-
cerpts.

(QPE 2.1) Access the list ER that has been stored along
with the subtree’s result in step (QP 2.5) and select the first
entry matching the current entity e. Take the target entity
e′ from that entry.

(QPE 2.2) Recursively generate excerpts for e′ and use E ←
{e′} for that.

(QPE 2.3) Produce a textual excerpt from e, the relation
name and e′. Add it to the excerpts generated recursively.

(QPE 3) For each occurs-with arc, generate the following
excerpts.

(QPE 3.1) Access the list C′′ that has been stored along
with the subtree’s result in step (QP 3.4). Filter it by E,
using the algorithm from step 3.5 to obtain a (presumably
small) context list Cres . This step is only done once for all
entities in E.

(QPE 3.2) Filter Cres with e to get a context list Ce with
contexts that have occurrences of this particular entity.

(QPE 3.2) Accumulate the scores8 for all postings with the
same context id in Ce and calculate the top context. Ac-
cess the original text by context id and take the accord-
ing passage as excerpt. The postings in the top context of
Ce include e, matching words and entities matching in sub-
trees further below the current arc along with their positions.
Those positions decide what to highlight in the excerpts.

(QPE 3.3) If there is another subtree below the current arc,
pick one of the result entities that was in the top context
from the previous step as e′ and recursively generate ex-
cerpts for e′ using E ← {e′}.

Excerpts for has-occurrence-of and occurs-in arcs are gen-
erated accordingly. Excerpts for ontology-arcs featuring the
is-a or equals relation can be directly produced from the
query and e.

6.4 Suggestions
Query suggestions are always sensitive to the current query

and the entered prefix. That prefix is a, possibly empty, part
of each query (see Section 3). Since queries consist of words,
instances, relations and classes, we provide separate sugges-
tions for each of them.

In the following let P =< p1, . . . , pn > be the prefix for the
suggestions. Note that multi word prefixes are also required
to distinguish extending an occurs-with arc (where all words
have to occur in the same context) from adding a fresh arc
to the current node. Let p be the string obtained through
concatenation of all elements in P without a separator. Let
E be the entity list that is the solution to the current query.
Note that P (and therefore p) may be empty. E may be
non-existent when there is no current query, i.e., we are in
the beginning of the query construction process.

Word suggestions

Word suggestions are only made when p is non-empty. The
prefix has to have a minimum length of k where we have a

8Note that this is the only place where we currently consider
the scores given to postings, and it is only for selecting the
(hopefully) best excerpts.



context list for each k-letter prefix, in our index (see section
5.1). This minimum length is only relevant for word sug-
gestions. The other suggestions discussed below, are always
computed as soon as the first letter is entered.

(QPS 1) To generate word postings, compute the list Wsugg

of word ids with scores as follows:

(QPS 1.1) Compute the context list C for the full prefix
analogous to steps (QP 3.1 - QP 3.2.2) of the processing of
occurs-with arcs using W ← P .

(QPS 1.2) If E exists, compute a subset C′ from C by keep-
ing only those index items from C with a context id such
that the context contains at least one entity from E. The
algorithm is analogous to the one depicted in step (QP 3.4).
If E does not exist, use C′ ← C.

(QPS 1.3) Lookup pn in the vocabulary to obtain two word
ids for a lower, id low , and upper, idup , bound on words
matching the prefix.

(QPS 1.4) Compute another subset Cwords from C′, such
that ∀(c, w) ∈ Cwords : id low ≤ w ≤ idup , where w is the
word or entity id of the posting. This is done by scanning
C′ once, only keeping items with an id in the given range.
All entities and all words that do not match the last part of
the prefix are now discarded.

(QPS 1.5) Compute the list of word suggestions Wsugg by
aggregating the elements in Cwords by word id and, depend-
ing on settings, either sum up scores or count elements and
take the count score. This is analogous to step (QP 3.5).

Finally sort Wsugg by score, lookup the string representa-
tion matching the ids in the vocabulary and suggest the top
words.

Managing synonyms

It is possible to directly obtain entity id boundaries from p

and filter only matching entities. Unfortunately, this does
not allow to get Neil Armstrong with both prefixes ar*
or ne*. Therefore we produce a mapping that contains
both entries {neilarmstrong→#Neil Armstrong} and {arm-
strongneil→ #Neil Armstrong} sorted by keys (#Neil Arm-
strong means that we, of course, store the id, not the string
representation). Similarly, we can add synonyms to that
mapping, e.g. {sportsman → #Athlete}.
We create a separate, tiny index for that mapping in the

following way. Keys are sorted lexicographically and stored
in a vocabulary. If there are n keys we store a vector M of
n entity ids as data where M [i] corresponds to the entity id
that is the target of the key with id i.

(QPS 2) Compute an entity list Ematch of entities that match
p as either real prefix or as a pseudo prefix in the following
way:

(QPS 2.1) Lookup p in the vocabulary to obtain a lower
bound id low and an upper bound idup on the word ids of
the keys matching the prefix.

(QPS 2.2) Create the entity list Ematch by selecting the range
between M [id low ] and M [idup ], and sort Ematch by entity id.

Instance, Relation and Class suggestions
Instance suggestions are obtained from the result entity

list of the query E in the obvious way. If there is a non-
empty prefix p, E is intersected with Ematch . For relation
suggestions, the has-relations (reversed) relation is accessed
with E as described in (QP 2), which yields an entity list of

relations ER. Suggestions and prefix filtering are performed
similar to instances using ER instead of E. Context sen-
sitive class suggestions are expensive to compute. Hence,
these suggestions are the only ones that are (currently) not
context-sensitive in our system. Instead we keep an extra
list of all classes with scores pertaining to their number of
instances and take that list as E.

7. EXPERIMENTS
We evaluated our index on three tasks: answering queries,

providing excerpts, and providing suggestions. For each
task we have generated multiple query sets as described
below. For the answering-queries task we compare various
approaches. Suggestions and excerpts cannot be provided
easily or at all with some of the approaches. Details about
our query sets can be found under the URL provided at the
end of our introduction (Section 1).

7.1 Experimental Setup
Our text collection is the text from all documents in the

English Wikipedia from January 3, 2012, obtained via
download.wikimedia.org. Some dimensions of our collec-
tion: 40 GB XML dump, 2.4 billion word occurrences (1.6
billion without stop-words), 285 million recognized entity
occurrences, and 334 million sentences which we decompose
into 418 million contexts.

As ontology we use the latest version of YAGO from Oc-
tober 20099. We ignore content that has no use for our
application, for example, the (large) relation during, which
provides the date of extraction for each fact. Altogether our
variant of YAGO contains 2.6 million entities, 19 124 classes,
60 relations, and 26.6 million facts.

Our index is kept in three separate files. The file for the
context lists has a size of 13.5 GB (see Section 5.2). The total
number of postings is 1.9 times as much as in a standard full-
text index. The file for the relation lists has a size of 0.5 GB.
Document excerpts are simply read from a file containing
the original text using precomputed byte offsets for each
context.

The code for the index building and query processing is
written entirely in C++. Performance tests marked with
(m) were run on a single core of a Dell PowerEdge server
with 2 Intel Xeon 2.6 GHz processors, 96 GB of main mem-
ory, and 6x900 GB SAS hard disks configured as Raid-5.
Performance tests marked with (d) were run on a single core
of a PC with a 3,6 GHz AMD processor, 4 GB of main mem-
ory and a 2 TB Seagate Barracuda 7200 hard disk. On this
system, indexes do not fit in memory and hence neither in
the file system cache.

Table 1 provides the average response times for eight types
of queries: (Q1) full-text only, one word; (Q2) full-text
only, two words; (Q3) ontology only, one arc between a
class and an entity; (Q4) class occurs-with one word; (Q5)
class occurs-with two words; (Q6) class ontology-arc (en-
tity occurs-with word); (Q7) class occurs-with word and
class; (Q8) class occurs-with word and (class occurs-with
one word).

We synthetically generated 1,000 queries for each type.
Starting from the root, we select elements as follows: For

9There is a more recent version, called YAGO2, but the
additions from YAGO to YAGO2 are not really interesting
for our search.

download.wikimedia.org


classes, relations and entities, pick a random ASCII prefix
of length 1, and consider our system’s top 20 suggestions
for the query built so far. For words, pick a random two
letter prefix from the 170 most common two letter prefixes
in the collection and consider the top 50 word suggestions.
Pick a random one of those suggestions. If no suggestion
exists, try a different random prefix. If 10 such attempts
fail, start again from the root for that query. Note that
using the suggestions guarantees that all queries have non-
empty result sets.
Additionally we add a realistic query set (QR), which con-

tains 46 queries that we manually constructed from the top-
ics of the Yahoo SemSearch 2011 List Search Track [16].

7.2 Comparative evaluation
We evaluated two baselines implementing the first two

approaches described in Section 4: (1) Inv, an inverted index
that has inverted lists for each class; (2) TS, a triple store
(we used RDF-3X [12] which is known to be very efficient)
with relations entity-occurs-in-context and word-occurs-in-
context added to the ontology.
Apart from our baselines, we compare two approaches that

follow the query processing presented in Section 6: One is
Map, an approach that uses normal inverted lists and ad-
ditional (”uninverted”) mappings from context id to entity
postings. The other is CL, our context lists that mix word
and entity postings as presented in Section 5.
Note that the two baselines are not capable of everything

our system does. The comparative evaluation only measures
retrieval of result entities. Excerpt generation and sugges-
tions cannot readily be provided by the baselines. Some
query sets cannot be answered, either: Since we only in-
cluded classes in the Inv baseline, queries that use more
relations than is-a, are impossible for this baseline to an-
swer. TS does not answer full-text only queries. Queries
from QR require features (prefix and OR) that our baseline
implementations do not provide and therefore this query set
is not used in the comparative evaluation.
For all approaches marked (m) (for memory), we have re-

peated the whole experiments (including program start, no
application caches involved) until no further speedup was
found and hence we assume the relevant portion of the in-
dex to be in the file system’s cache. Additionally, we have
evaluated Map and CL on a PC with only 4 GB of main
memory and cold caches to compare setups where the index
does not fit in main memory. These are marked (d)isk.

Inv(m) TS(m) Map(m) Map(d) CL(m) CL(d)

Q1 13ms - 13ms 28ms 34ms 64ms

Q2 28ms - 28ms 59ms 81ms 150ms

Q3 - 1ms 2ms 5ms 2ms 5ms

Q4 208ms 1.2s 78ms 45s 42ms 80ms

Q5 228ms 0.8s 37ms 2s 86ms 186ms

Q6 - 1.4s 207ms 63s 75ms 138ms

Q7 1s 2.5s 234ms 58s 58ms 115ms

Q8 2.5s 3.7s 430ms 104s 109ms 221ms

Size 16GB 87GB 11GB 11GB 14GB 14GB

Table 1: Comparison of retrieval of entity lists (avg
times). No excerpts or suggestions.

Some numbers are identical. This is no coincidence since
full-text only queries are entirely identical for Inv and Map
and so are ontology-only queries for Map and CL. Apart
from that, we observe that both baselines are not really com-
petitive. In particular, the Inv baseline uses an index that
contains no relational information at all but still performs
poorly in comparison. Especially complex queries (Q8) are
problematic, but all queries involving the long inverted lists
for classes (e.g. there are 78M postings in the inverted list
for person) have a problem.

The Map Approach is not too bad but relies heavily on
enough RAM to hold the mappings from context to entity
postings. While the CL(d) approach is about two times
slower than CL(m), Map(d) becomes unacceptably slow.
Even if the entire index is contained in memory, CL(m)
performs generally faster than Map(m) due to the better
locality of access.

However, full-text only queries are obviously faster if in-
verted lists do not contain additional entity postings. Addi-
tionally, whenever multiple words are used in a single occurs-
with triple, only one list has to contain all the entity post-
ings. All others can be normal inverted lists, which accel-
erates reading on the one hand, and filtering for concrete
words from our lists for entire prefixes on the other hand. A
hybrid of Map and CL could therefore achieve slightly faster
query times at the expense of additional space requirements.

7.3 Full Queries with Excerpts: Breakdown
In the previous section, we have evaluated and compared

the retrieval of entity lists. In this section, we provide a
breakdown by operation for the CL approach. Additionally,
we include providing evidence hits for the top 10 entities.

fetch(m) fetch(d) excerpt agg filter i+m+r

Q1 20ms 48ms 2ms 5ms 7ms 1ms

Q2 57ms 124ms <1ms 2ms 18ms 1ms

Q3 1ms 4ms <1ms 0ms 0ms <1ms

Q4 23ms 60ms 3ms 6ms 10ms <1ms

Q5 59ms 152ms <1ms <1ms 22ms 3ms

Q6 34ms 88ms 18ms 16ms 30ms <1ms

Q7 31ms 84ms 2ms 1ms 16ms <1ms

Q8 61ms 165ms 8ms 13ms 32ms 1ms

QR 109ms 260ms 1ms <1ms 59ms 5ms

Table 2: Breakdown of CL by operations. Total av-
erages correspond to numbers in Table 1 plus the
times from the excerpt column. Avg query time for
QR is 182ms.

The times reported in Table 2 are for computing and show-
ing the hits, that is, the contents of the large box on the right
in Figure 1. Hence, they involve the steps described above
in Sections 6.2 and 6.3. Queries from QR can be complex or
involve many keywords, especially in combination with the
OR operator (brother|sister|silbling*).

We observe that the bulk of the query time is spent in
fetching lists. This includes reading the list from (d)isk or
the file system cache (m), decompression, and recreating
our lists of four-tuples. The other three columns provide
the times for entity or document aggregation (in Steps QP
3.5, QP 4 and QP 5 in Section 6), filter ing (in Steps QP



3.2.2, QP 3.4 and QPE 3.1), and intersection, merging and
ranking of result lists (in Steps QP 1, QP 3.2.4 and QP 3.3).
The total query time corresponds to the time listed in Table
1 plus the (negligibly small) times from the excerpt column.

7.4 Suggestions
Table 3 provides the times for query suggestions when

formulating a query step-by-step. We differentiate here be-
tween suggestions at three different points during the query
formulation process: (S1) type something in the beginning;
(S2) type something after a single class has been chosen;
(S3) type something after a class and a relation have been
chosen and the target of the relation is active;
We take the queries from classes (Q3) and (Q4) above,

create them step-by-step, and type the respective element
from left to right. We always suggest words, relations, in-
stances and classes. In the beginning (S1), no relations can
be suggested. Due to the prefix length used for the context
lists (see Section 5.1), word suggestions are only presented
for prefixes of length 4 or greater. Note that suggestions for
more complex queries (Q5-8 and QR) would be faster and
not slower, because the result sets are smaller.

Active
Prefix Length

1 2 3 4 ≥ 5

start 30ms 8ms 4ms 60ms 18ms

class 15ms 9ms 7ms 45ms 21ms

rel-target 19ms 7ms 4ms 34ms 8ms

Table 3: Query suggestion times for three different
stations in the query formulation process.

The most costly operations are performed for prefixes of
length 4. This is the prefix length where word suggestions
are presented for the first time. Again those operations are
dominated by reading the index lists from disk (45%). Word
suggestions for prefix length≥ 5 are filtered from the posting
lists for smaller prefixes and are significantly faster, again.
The time for presenting non-word suggestions is dominated
by the time to get an entity list matching the pseudo prefix
(see Step QPS 2): up to 15ms for prefix length 1, lower for
longer prefixes.

8. CONCLUSIONS AND FUTURE WORK
We have presented an index that enables efficient semantic

full-text search. We have argued how neither classic inverted
indexes and full-text engines nor triple stores can handle our
problem. For the English Wikipedia in combination with the
YAGO ontology, we achieve interactive query and suggestion
times of around 100ms and often less.
Text collections much larger than Wikipedia could be han-

dled as follows. Fetching (reading and decompressing) index
lists is the dominant factor. The text collections could be
split into parts, and an index built for each part, on sep-
arate machines. This technique is described as collection
partitioning in [3]. During query processing results can be
merged when small entity lists, rather than huge posting
lists, are involved.
We have experimented with a much larger ontology than

YAGO (15 times more non-is-a facts) and have not encoun-
tered any problems. Using YAGO, lists for relations other
than is-a contain at most 0.5 million entries. Large context
lists for our Wikipedia collection usually contain about 10

million entries. On top of that, the operations performed on
context lists are more complex than those performed on re-
lation lists. Our experiments confirm that ontology queries
are currently no issue for retrieval at all and that there is
room for much bigger relations.
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