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Abstract

We consider the problem of Pareto-optimal route
planning in public-transit networks of a whole
country, a whole continent, or even the whole
world. On such large networks, existing approaches
suffer from either a very large space consumption, a
very long preprocessing time or slow query process-
ing. Transfer Patterns, a state-of-the-art technique
for route planning in transit networks, achieves ex-
cellent query times, but the space consumption is
large and the preprocessing time is huge. In this
paper, we introduce a new scheme for the Transfer
Pattern precomputation and query graph construc-
tion that reduces both the necessary preprocessing
time and space consumption by an order of mag-
nitude and more. Average query times are below
1 ms for local queries, independent of the size of
the network, around 30 ms for non-local queries on
the complete transit network of Germany, and an
estimated 200 ms for a fictitious transit network
covering the currently available data of the whole
world.

1 Introduction

Route planning on real-world public-transit net-
works is a complex problem. When evaluating al-
gorithms for this problem, a variety of criteria are
important in practice: preprocessing time, space
consumption of the precomputed auxiliary data,
query processing time and space, the ability for
multi-criteria optimization (travel times, number of
transfers, prices etc.), the ability for realistic mod-
eling (transfer buffers, foot paths), and the ability
to deal with delays and other real-time informa-
tion. There exist a variety of approaches, which
hit different Pareto points among these criteria; see
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[2] for an overview. One such approach is Trans-
fer Patterns [1, 3], which is excellent for all of the
criteria above except two: the space consumption
of the precomputed auxiliary data is large and the
preprocessing time is huge.

Another important aspect mostly neglected so
far is scalability. Most experimental evaluations of
existing approaches are done on metropolitan ar-
eas (like London [9, 18] or Madrid [4]), and some
on whole countries (like Germany [16, 18] or Swe-
den [6, 5]). The largest of these networks is Ger-
many, with an average of 15 million connections
per day. In comparison, the number of connec-
tions on an average day for the (currently avail-
able) public-transit data of the whole world is esti-
mated to be 320 million [15]. A few papers also con-
sider networks of whole continents. For example,
[12] consider Europe, however only long-distance
transport, which amounts for only a tiny fraction
of all transport (1.7 million connections per day).
In the original Transfer Patterns publication [1], a
North America network was investigated (57 mil-
lion connections). However, the reported prepro-
cessing time is around 3,000 core hours (4 months
on a single core) with suboptimal results for an
(albeit very small) fraction of the queries. For the
other route planning approaches, experimental re-
sults for networks of this size are not available.

We first provide an overview of existing route
planning approaches and discuss their potential
applicability to continental-size networks. We will
see that for most approaches, the extrapolated
query times or space consumption are too high to
be of practical use. For Transfer Patterns, query
times were shown to scale well (about 6 ms on New
York, about 10 ms for North America [1]), so there
is great potential for interactive query times even
when considering the network of the whole world.

In this paper, we introduce a new scheme



for Transfer Patterns precomputation and query
graph construction that allows interactive query
times for huge transit networks with manageable
preprocessing times and space consumption.

1.1 Scalability of other routing approaches
We are interested in the setting where all Pareto-
optimal routes regarding travel time and number
of transfers are computed in a query – which is the
most common objective function when it comes to
route planning in public-transit networks. A route
is Pareto-optimal if there exists no other route
for the same departure time with smaller travel
time and less number of transfers. We discuss the
following approaches with regard to the ability of
Pareto-optimal route computation and scalability:
Dijkstra’s algorithm on a time-expanded graph
(TED), Dijkstra’ algorithm on a time-dependent
graph (TDD), round-based public-transit routing
(RAPTOR) [9], the Connection Scan algorithm
(CSA) [10] and its accelerated version (ACSA) [16],
trip-based routing (TB) [18], and approaches based
on labeling, namely public-transit labeling (PTL)
[6] and time-table labeling (TTL) [17].

Time-expanded and time-dependent graphs are
basic models for converting the timetable infor-
mation of a public-transit network into a graph
that enables routing via Dijkstra’s algorithm. The
TED approach was used in the original Transfer
Pattern paper for preprocessing. The disadvan-
tage of the time-expanded model is the relatively
large graph size. For example, for the North Amer-
ica instance with about 338,000 stations the time-
expanded graph contains over 100 million nodes
and about 450 million edges. The query times
for both TED and TDD exceed 100 milliseconds
for Pareto-optimal routes (regarding travel time
and number of transfers), already on metropolitan-
sized networks. For whole countries or even conti-
nents, query times are on the order of several sec-
onds and more.

RAPTOR takes advantage of the fact that op-
timal connections typically require only few trans-
fers. RAPTOR computes Pareto-optimal connec-
tions in order of increasing number of transfers
by operating in rounds. The number of rounds is
bounded by the maximum number of transfers oc-

curring in an optimal connection from start to des-
tination. For cross-country queries this number can
easily be five or more. Since RAPTOR considers
all stations reachable within this maximum num-
ber of transfers, it is likely to scan large portions
of the complete network for such queries. RAP-
TOR achieves good query times for metropolitan
areas, but query times are over one second already
on Germany.

CSA stores all elementary connections in a sin-
gle array, sorted by departure time. For a given
query, the connections are scanned starting from
the given source station and departure time until
the algorithm can be sure that all optimal connec-
tions to the given target station are found. The
number of scanned connections is usually large al-
ready for small networks, yet this algorithm is fast
due to its ideal data locality. On London, CSA out-
performs RAPTOR. Nevertheless, CSA is expected
to scale even worse than RAPTOR. When consid-
ering, e.g., the whole of Europe, CSA would scan
connections in Italy, Greece and Norway even when
the query is between stations in Lisbon. ACSA
was developed to reduce the number of such un-
necessary scans by partitioning the transit network
(using METIS [13]), and restricting scan opera-
tions to connections in/between relevant partitions
in a query. Unfortunately, ACSA was only eval-
uated for earliest arrival time queries (using the
number of transfers only as tie breaker, not as ad-
ditional optimization criterion). Minimizing only
travel time is a significantly easier problem, and
only one solution per departure time is produced
(while for Pareto-optimal queries typically several
routes are returned).

TB is based on a similar idea as RAPTOR
and also enumerates optimal routes in increasing
order of transfers. The main difference is that
possible transfers between trips are pruned in a
preprocessing phase in an optimality-preserving
way. This allows to scan less trips in a query,
which results in query times of about 40ms on
Germany. Answering queries on Germany with
Transfer Patterns takes 0.3ms (without hubs) on
average which is two orders of magnitude faster.
The gap between the query times is expected to
become larger with growing network sizes, because



even with transfer pruning, TB has to consider a
significant portion of the network in a cross-country
or even cross-continental query.

PTL uses hub labeling on a time-expanded
graph. This leads to query times on the order of a
few microseconds on London and also whole coun-
tries such as Sweden. The price to pay is a huge
space consumption of the auxiliary data, which is
about 26 GB for London alone. Even when neglect-
ing amplification effects, the space consumption for
considering, e.g., the whole of Europe would be gi-
gantic. TTL is another indexing technique for tran-
sit networks which assigns labels to stations, lead-
ing again to query times in the microsecond range.
Due to a custom-tailored compression technique,
the space consumption of the auxiliary data is only
about 1 GB for metropolitan areas. But TTL only
computes optimal routes regarding travel time /
earliest arrival time. Pareto-optimal solutions can-
not be produced. Furthermore, all labeling tech-
niques suffer from not being easily adaptable in
case delays have to be considered.

1.2 Other related work While none of the
existing approaches for public-transit routing have
been evaluated on a whole-world network, web
services like Rome2rio1 offer the computation of
routes between arbitrary locations on the globe.
However, the goal there is not to come up with the
full set of Pareto-optimal solutions, but rather a
concise set of possible route options.

Improving the preprocessing time for Transfer
Patterns was considered before in the frequency-
labeling approach [5]. Frequency-labeling is based
on the idea of handling vehicles that depart peri-
odically not individually for every departure time
but in a single operation whenever possible. This
accelerates the Transfer Pattern precomputation
by a factor of 60 on Germany (compared to the
original TP paper [1], taking the difference of the
used hardware into account) while also requiring
less space during preprocessing. However, the large
space consumption for the auxiliary data remains
unchanged with this approach. And even with the
improved preprocessing time, handling networks of

1http://www.rome2rio.com

continental size seems out of reach without massive
parallelization.

Our new Transfer Pattern preprocessing
scheme is inspired by the Customizable Route
Planning framework (CRP) [7] which allows fast
shortest-path computation and real-time updates
on street networks. CRP starts by partitioning the
street network into cells. Then, between all pairs
of border nodes of a single cell (with border nodes
being adjacent to an edge connecting to another
cell), overlay edges are inserted with costs equal
to the shortest driving time between the nodes.
Queries are answered by a bi-directional Dijkstra
computation in this overlay graph. As the overlay
edges allow to skip over whole cells, query times
are significantly better for CRP than for plain Di-
jkstra (especially if the partitioning is repeated re-
cursively, resulting in a multi-layer graph). But
CRP relies on several characteristics of street net-
works that public-transit networks are not compli-
ant with. For example, every subpath of a short-
est/quickest path is also an optimal path in the
street network. This is not true for routes in public-
transit networks when considering Pareto-optimal
solutions, which increases the problem complexity
significantly.

1.3 Contribution We present a new prepro-
cessing scheme for Transfer Patterns that improves
preprocessing time and space consumption for the
precomputed auxiliary data structures by an order
of magnitude and more. Local queries take below
1 ms, and non-local queries can be answered in 30
ms on Germany and an estimated 200 ms on the
network of the whole world.

We first cluster the network and then show how
these clusters and the natural hierarchy of local
and long-distance transport can be exploited to
limit the necessary effort for constructing transfer
patterns in an optimality-preserving way. We
describe several clustering methods and discuss
their impact on the complete preprocessing scheme.
We evaluate our new scheme on the large (but not
huge) transit network of Germany and compare
the outcome to the conventional Transfer Pattern
scheme. We also extrapolate our results to a (so
far fictitious) public-transit network of the whole
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world.
The deeper reason why our approach works

is that very large (country-scale, continental-scale,
or even world-scale) transit networks can be de-
composed into fairly well-separated sub-networks
of bounded size. Each such sub-network can be as
large as a whole metropolitan area (e.g., New York
and surrounding cities). This works because the
state of the art has advanced to such a point that
public-transit routing on whole metropolitan areas
can be done with very fast query processing time
and reasonable preprocessing effort. We can there-
fore consider whole metropolitan areas as “local”
in our approach.

2 Preliminaries

We first introduce some basic notation and describe
in detail the conventional Transfer Pattern con-
struction and query processing scheme.

2.1 Transfer Patterns Transfer Patterns (TP)
[1] is the approach behind public transportation
route planning on Google Maps. The idea of TP
is to precompute and compactly store all optimal
routes in a time-independent abstraction. This
abstraction of an optimal route, the so called
transfer pattern, is the sequence of stations on the
route at which a change of vehicle or transportation
mode occurs (including the source and the target
station).

To construct TP, a profile search is started for
each station in the network, computing all Pareto-
optimal paths to all other stations in a given time
interval. Then all Pareto-optimal paths are back-
tracked and the transfer stations are identified. For
each station, all these patterns are stored in reverse
order in a directed acyclic graph (DAG). This re-
duces the space consumption, as common prefixes
of patterns only have to be stored once. Still, if
every station can be reached from every other sta-
tion, the space consumption for all DAGs is (at
least) quadratic in the number of stations in the
network. For small networks, this is negligible com-
pared to the space consumption for the timetables.
But for the whole world, with millions of stations,
this would be infeasible. Moreover, profile searches
are expensive for large networks, even with algo-

rithms designed for this purpose, like rRaptor [9],
frequency-labeling [5] or profile TB [18]. With the
latter, profile searches for Germany for a 24 hour
range on a single core require about a day. For
larger networks, we need more profile searches and
each individual profile search is more expensive.

Query processing works as follows. For given
start and target stations s and t, a query graph
is constructed by extracting all transfer patterns
from the DAG for s which lead to t (which is
done in reverse starting from nodes in the DAG
referring to t). The query graph is typically very
small (on average less than a hundred nodes for
queries on Germany). For a given departure time,
Pareto-optimal routes can be found with the help
of the query graph by running a time-dependent
Dijkstra on it. Evaluating edge costs in the query
graph amounts to a look-up in a direct connection
data structure, which stores all routes that do
not require transfers between each pair of stations,
sorted by departure time. This enables query times
of less than a millisecond on Germany.

2.2 Hubs Hubs were introduced to reduce the
necessary preprocessing effort and especially the
space consumption for TP. Hubs are a subset of
“important” stations in the sense that they appear
in many Pareto-optimal routes. Profile searches
from hubs are done as described above. Profile
searches from non-hubs can be stopped when all
active labels encode a route over a hub. Every first
hub on a Pareto-optimal path belongs to the access
station set of the source station. At query time, the
DAG for s is used to identify all optimal patterns
to t and to the access stations of s. The DAGs of
the access stations are then used to get the optimal
patterns to the target t.

For example, for Switzerland, the space con-
sumption for the DAGs was reduced from over
18 GB to about 830 MB when using hubs [1].
But preprocessing times were only reduced from
635 h to 586 h. To handle even larger networks,
some heuristics were introduced in [1], as e.g. only
considering routes with at most two transfers in
the searches from non-hubs. It was shown that
the number of suboptimal queries when using the
heuristics is very small. Heuristic Transfer Pat-



tern construction for Switzerland only required 61
h. But for North America, even heuristic prepro-
cessing requires over 3000 h.

3 Making Transfer Patterns Scalable

In the following, we present a multi-phase TP pre-
processing scheme which takes several characteris-
tics of transit networks into account to reduce the
time and space necessary to compute and store all
optimal Transfer Patterns.

3.1 Clustering transit networks The first
and basic step in our preprocessing pipeline con-
sists of dividing the stations of the transit network
into suitable partitions/clusters. Ideally, we would
like every cluster to be convex.

Definition 1. (Convex Transit Cluster)
A subset C ⊆ S of stations in a transit network
is called a convex transit cluster if for all pairs
s, t ∈ C all optimal routes from s to t only traverse
stations in C.

The complete network is naturally convex. But
our goal is to break the network down into smaller
clusters. In general, we expect from a good
clustering that (1) clusters have moderate size, (2)
there are only few connections between different
clusters (3) each cluster contains at least one
station where long-distance vehicles depart.

Many large transit networks are implicitly clus-
tered because of different transport agencies run-
ning the vehicles in certain areas. But this data
is not always available and the induced cluster-
ing might not meet our requirements (in terms of
size, number of connections between clusters and
convexity). Therefore, we will propose methods
that work independently of this kind of informa-
tion. Our clustering is computed based on only the
local-transport connections and foot paths and not
on the long-distance connections (like ICE, long-
distance buses, etc.). If the given transit data does
not provide a distinction between local and long-
distance transport, a simple classifier based on the
number of stations on the trip, distance between
consecutive stations on the trip and speed of the
vehicle can be used to come up with a heuristic
distinction.

Based on all trips specified in the transit data,
we construct a graph by creating a vertex for every
station and connecting consecutive stations in a
trip with edges. So for a trip that traverses k
stations, we insert k−1 edges. Edge weights reflect
the frequency of the connection over the period of
a year. If several trips would lead to the insertion
of the same edge, edge weights are accumulated.
Moreover we add edges between stations when they
are connected via a foot path (≤ 400 m). They
receive an artificially high edge weight because foot
paths can be used at any time and stations in close
proximity of each other should preferably end up
in the same cluster. In our experiments, we use the
weight 200,000 which corresponds to ≈ 365 ·24 ·20,
i.e. the foot path is used every three minutes. This
leads to foot paths exhibiting a higher weight than
99.89% of the transit edges.

In the following, we outline four methods
for computing clusters in public-transit networks,
namely k-Means, merging, METIS and PUNCH.

3.1.1 k-Means clustering [14] This approach
is oblivious of the graph structure but only consid-
ers the geo-coordinates of the stations. The k is a
parameter to be set by the user. For a given k, an
initial set of k seed stations is selected (e.g., ran-
domly) and all other stations are assigned to the
cluster of their closest seed. k-Means then mini-
mizes the overall distance from the data points to
the midpoints of the clusters to which they are as-
signed. It operates in rounds, where each round
starts by selecting the means of the clusters as new
seeds, followed by a reassignment of the stations to
these seeds. The algorithms stops when the clus-
tering does not change anymore from one round to
the next. Note that k-Means does not necessarily
compute connected partitions, since it ignores the
structure of the network and uses only spatial data
to form the clusters.

3.1.2 Merge-based clustering [11] This hier-
archical approach was originally designed to find a
partitioning of a road network. In the beginning,
every node of a graph forms its own partition of size
1. Neighboring partitions are merged until their
size reaches a given upper bound U . The order



of the pairs of partitions that are merged is deter-
mined by a utility function: in each step, the algo-
rithm selects the pair of neighboring partitions of
combined size ≤ U with the maximum value of the
utility function. Since the aim of the algorithm is
to find a partitioning with moderate partition sizes
and small edge weights between the partitions, the
utility function punishes big partitions and rewards
pairs of partitions with high edge weights between
them. We use the following utility function in our
experiments:

f(u, v) = 1/s(u) · 1/s(v) · (w(u,v)/
√

s(u) + w(v,u)/
√

s(v))

with s(u), s(v) denoting the sizes of the clusters
u, v and w(u, v) is the sum of the weights of all
edges with one endpoint in u and one endpoint in
v. The algorithm stops when no pair of neighboring
partitions with combined size ≤ U is left. Instead
of an upper bound size U , one can also specify the
number k of partitions. Then the algorithm merges
partitions until only k partitions are left, without
considering the size of the partitions. Just like for
k-Means, the right choice of k is crucial for the
result.

3.1.3 METIS [13] and PUNCH [8] METIS is
a general-purpose graph-clustering algorithm that
runs in three phases. In the first phase (called
coarsening) the size of the graph is reduced. In the
second phase, a partitioning of the coarse graph is
computed. In the third phase, the partitioning is
projected back to the original graph and refined.
We use METIS with the -contig parameter, which
enforces contiguous partitions. METIS is used in
the preprocessing of ACSA [16].

PUNCH (partitioning using natural cut heuris-
tics) was originally developed for road networks
and runs in two phases. The first phase (called
filtering) shrinks the input graph without chang-
ing its natural properties (as exhibiting small cuts
along rivers and mountains). The second phase
(called assembly) computes an initial partitioning
of the shrunk graph and then revisits parts of the
shrunk graph in order to improve the partitioning.

3.1.4 Types of stations in a cluster Let C
be the set of clusters from a clustering. For each

Figure 1: Illustration of a cluster (gray area). Dots
indicate stations, trips are represented by straight
lines. The large red dots indicate the border
stations of the cluster. These stations are served
by trips that enter/leave the cluster.

cluster C ∈ C we define the set of border stations
b(C) as those stations from C that are served by a
trip to or from another cluster. That is, s ∈ b(C) iff
s ∈ C and there is a trip containing s and s′ ∈ C ′

with C ′ 6= C (see Figure 1 for an example). We
also define long(C) to be the set of those stations
from C where long-distance transport departs or
arrives.

In the following, we will use Cx to refer to the
cluster of a station x.

3.1.5 Border station reduction We formu-
lated as goals for our clustering that clusters should
have moderate size and there should only be few
connections between different clusters. These two
requirements are important as they will determine
the preprocessing time and the query time later on.
To be more specific, our preprocessing will require
to compute all Pareto-optimal routes within each
cluster. Obviously, the smaller the clusters the less
time is needed per cluster. But we will also need to
compute Pareto-optimal routes between clusters.
It will turn out that this requires an expensive pro-
file search for each border station of each cluster.
Also, for an s-t-query the number of border sta-
tions of Cs and Ct will determine the query graph
size. Hence small border station sets are desirable.
But this leads to a conflict with our goal of having
small clusters. For example, if we aim for clusters
with around 1,000 stations each, large metropolitan



Figure 2: Border station reduction by merging two
clusters – only 5 out of 27 remain.

areas, as Berlin or London, with more than 10,000
stations are split in several parts. As the public-
transit in such areas is densely connected, splitting
them leads to a huge number of border stations.
But there are typically only a few of such densely
connected areas per country. Hence allowing larger
clusters only for such areas will not increase the
total time for precomputing intra-cluster solutions
too severely, but will decrease the maximum num-
ber of border stations per cluster.

We realize this by a post-processing phase in
which we merge clusters if the number of border
stations reduces dramatically, see Figure 2 for an
example.

3.2 Local transfer patterns The next step af-
ter the clustering is to compute local transfer pat-
terns, for which we need the optimal connections
between all stations inside a cluster. Since we as-
sume that each cluster is of moderate size (at most
of the size of one metropolitan area), we can use
the basic Transfer Patterns approach without hubs
here (using, e.g., rRaptor for the profile searches).
So for each cluster C, we start a profile query for
each station s ∈ C until all Pareto-optimal routes
to all other stations in C are known. We do not
consider connections with transfer stations that are
not in C at this stage.

If the cluster is convex, this already guarantees
optimal local queries, that is, between two stations

from the same cluster. Determining which clusters
are convex will be a by-product of the last step of
our framework.

3.3 Long-distance transfer patterns be-
tween clusters In the next step, we concentrate
on long-distance transport. Typically, the number
of stations serving long-distance transport (called
long-distance stations in the following) is very small
compared to the total number of stations. For ex-
ample, for the whole network of Germany less than
3% of all stations are long-distance in this sense.
We now want to compute the transfer patterns be-
tween all pairs of long-distance stations in different
clusters. To this end, we run a profile search from
each s ∈ long(C) until all optimal connections to
stations in

⋃
C′∈C\C long(C ′) are known.

During the search, whenever a new cluster C ′ is
entered, we use the local transfer pattern from the
previous step to compute labels for all stations in
b(C ′) and long(C ′). This saves us the consideration
of the complete local transport in every cluster,
thus speeding up the profile searches significantly.

If considering not only countries but whole con-
tinents or the public transport world-wide (includ-
ing flights), the computation of these long-distance
patterns might still be too expensive. Therefore,
we use hubs in this phase to limit the search ra-
dius, for example large airports and train stations
(e.g., Frankfurt Airport).

Having completed this step, we can compute
approximately optimal routes between two stations
s and t (in different clusters) efficiently as follows.
We first look up the local transfer patterns from s
to all stations in long(Cs) and from all stations in
long(Ct) to t. Then we look up the long-distance
transfer patterns from the long-distance stations in
long(Cs) to the long-distance stations is long(Ct).
Note that in a suitable clustering neither long(Cs)
nor long(Ct) should be empty, i.e., every cluster
contains at least one long-distance station. The
resulting query graph can be evaluated as usual.

3.4 Local connections between clusters It
remains to take care of optimal connections that
demand local transport between different clusters.
A naive approach would be to run a complete



profile search from every station of each cluster
considering local and long-distance transport. But
this would take effort comparable to that of the
conventional Transfer Patterns approach. We use
two modifications in order to reduce the necessary
effort, based on the output of the previous steps
above:

1. We only consider border stations of clusters
instead of all stations as starting points for
profile searches.

2. We accelerate each search by considering the
(approximate) solutions that can be com-
puted via the the precomputed local and long-
distance Transfer Patterns.

We now describe in detail how these two modifica-
tions help to decrease the preprocessing time.

In the conventional Transfer Pattern computa-
tion, the profile searches from each station do a lot
of redundant work. For example, consider a station
s which only has elementary connections to another
station s′. Then every optimal connection from s
could be deduced by using the query graph for s′

and augmenting it with the edge (s, s′). A separate
profile search starting at s would be unnecessary.
Hubs were introduced in the original approach as
one method to reduce redundancy: the parts of the
optimal routes beyond hub stations are only com-
puted once. We will use the border stations of each
cluster like hubs. Obviously, every connection be-
tween different clusters Cs and Ct involves visiting
at least a border station in Cs and a border sta-
tion in Ct. Since we already computed the optimal
connections between all pairs of stations inside a
cluster in Step 2, it remains to compute the opti-
mal connections between the border stations.

A profile search from a border station b ∈ Cb

works as follows. We use a time-dependent Dijk-
stra computation and consider only local transport
connections to other border stations. Every time
we improve a label at a border station b′ of a cluster
Cb′ , we try to improve the labels at all other bor-
der stations of C ′b by using the local transfer pat-
terns from Step 2. Each improved label is added
to the priority queue (PQ) of our Dijkstra com-
putation. Moreover, we consider the long-distance

connections leaving the cluster as follows. We first
evaluate the local transfer patterns from b′ to all
stations in long(Cb′). Then we use the transfer
patterns for each station from long(C ′b) (precom-
puted in Step 3) to improve the labels of all other
(far away) stations q ∈ long(Cq). Since we are only
interested in border-station labels, we use the local
transfer pattern in Cq to check the optimal routes
from q to all border nodes of Cq. Only if a border-
station label is improved, we add it to the PQ.

After the profile run is completed, all optimal
connections are backtracked in order to construct
the DAG. This includes the integration of local and
long-distance transfer patterns (from Steps 2 and
3) which were used in the search. In order to later
construct query graphs between border stations
more efficiently, we do not construct a DAG for
each individual border station of C but rather
one DAG per cluster, containing all patterns to a
border station of the cluster. Note that a simple
merging of the DAGs does not necessarily lead to
a DAG again. We take care of potential cycles by
keeping multiple DAGs per cluster if necessary.

The described approach limits the search effort
that is necessary per border station. Intuitively,
a route to a far-away destination almost always
involves long-distance transport. This is because
using only local transport the target is either
unreachable (think about going from the U.S. East
Coast to the West Coast) or the travel time and/or
the number of transfers are unbearably high. Using
our (approximate) solutions via local and long-
distance transfer patterns, we are able to prune
non-optimal local connections early. Moreover, we
only consider non-border stations in a cluster if
they are part of a transfer pattern between two
border or long-distance stations. This saves many
edge relaxation operations and – since only border
stations are pushed into the PQ – also reduces the
space consumption of the profile search.

Over the course of this last preprocessing step,
we can easily decide whether the clusters produced
in the first step are convex. If no new optimal
patterns are identified between border stations of
a cluster, the local transfer Patterns already cap-
tured all optimal connections between all stations
inside the cluster. In that case, the cluster is con-



vex. Otherwise it is not.

3.5 Query processing For a given query, we
proceed as follows. We first check whether the
source station s and the target station t are in the
same cluster. If this is the case and the cluster
is marked convex, we only need to evaluate the
query graph built from the local transfer patterns
between s and t, which can easily be extracted.

If s and t are in different clusters or in the
same non-convex cluster, we additionally extract
the local query graph from s to all border stations
of Cs. We do the same for the border stations of
Ct and t. Then we extract the transfer patterns
between the border stations of the two clusters
which provides us with the final query graph. If
hubs are used, they are incorporated as described
in Section 2.2.

Running a time-dependent Dijkstra on the
query graph (using the direct connection data
structure to evaluate edge costs) completes the
query answering.

3.6 Correctness proof We prove that our ap-
proach returns the full set of Pareto-optimal so-
lutions. For that purpose, we first show an infix-
optimality property of Pareto-optimal transfer pat-
terns.

Lemma 3.1. If a Pareto-optimal route r from s to
t is encoded with the transfer pattern s, q1, · · · , qr, t,
then either every subpattern qi, · · · , qj also encodes
a Pareto-optimal route or it can be replaced by a
pattern that encodes a Pareto-optimal solution from
qi to qj without changing the costs of the route from
s to t.

Proof. Let qi, · · · , qj be an arbitrary subpattern.
Let dep be the departure time at qi in r and
arr the arrival time at qj . If qi, · · · , qj is not
Pareto-optimal, there has to exist another route
from qi to qj which (1) departs no earlier than
dep, (2) has no more than j − i − 1 transfers and
(3) arrives no later at qj than arr. Because of (1)
and (3), we can create a new valid route r′ from s
to t that uses the alternative route from qi to qj .
Because of (1)-(3), r′ can only lead to the same or
a better arrival time at t and to less or the same

number of transfers as r. Therefore, if r′ would
be better than r in one aspect, r would not have
been Pareto-optimal in the first place. Hence we
conclude that r and r′ lead to the same costs.

Theorem 3.1. The query answering procedure re-
turns all Pareto-optimal solutions from s to t.

Proof. If s and t are in the same convex cluster
(Cs = Ct), the correctness argument from the
conventional Transfer Patterns algorithm applies.

Otherwise let s, q1, q2, · · · , qr, t be a pattern of a
Pareto-optimal solution. Let qi be the first station
in the pattern that is not contained in Cs. Then
the pattern from s to qi−1 has to be contained
in the DAG for s because it is an optimal local
transfer pattern (possibly qi−1 = s). Analogously,
let qj be the last station in the pattern that is not
contained in Ct. Then the pattern qj+1 to t has to
be contained in the DAG for qj+1 from the local
transfer patterns computation (possibly qj+1 = t).

Now qi−1 and qi are in different clusters,
and so are qj and qj+1. Hence qi−1 is a border
station of Cs and qj+1 is a border station of
Ct. Therefore all optimal patterns between qi−1
and qj+1 are encoded in the DAG for the border
stations of Cs. According to Lemma 3.1, if
s, . . . , qi−1, . . . , qj+1, . . . , t is a pattern encoding
a Pareto-optimal solution, either the subpattern
from qi−1 to qj+1 has to be optimal as well for
some departure time or there exists an alternative
pattern that leads to the same Pareto-optimal
solution from s to t. Therefore, the extracted
query graph (encoding the precomputed Pareto-
optimal solutions from s to the border nodes of
Cs, from all border nodes of Cs to all border
nodes of Ct and from the border nodes of Ct to t)
allows to recreate the Pareto-optimal solution in
question. As this holds for every pattern leading
to a Pareto-optimal solution, the time-dependent
Dijkstra run on the query graph will return the
full set of Pareto-optimal solutions.

We want to emphasize that our definition of bor-
der stations (all stations on inter-cluster trips) is
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Figure 3: Illustrating the necessity of all stations
on inter-cluster trips being border stations: If only
the red marked nodes would be border stations,
the only Pareto-optimal route from the border of
A to the border of B would be via the green line,
taking 40 minutes and no transfers. Combining
local patterns with border patterns, the route from
the circled node to B would cost 45 minutes and
one transfer. But the Pareto-optimal solution of
using the blue line directly, taking 1 hour and zero
transfers, would be missed. If the circled node is a
border station as well this problem can not occur.

crucial for correctness. Every station with a di-
rect connection to another cluster is a border sta-
tion according to our definition. Figure 3 shows
that defining the border stations as those with an
elementary connection to another cluster would
not suffice, as Pareto-optimal solutions would be
missed.

4 Experimental Results

We implemented the new Transfer Pattern con-
struction and query processing scheme in C++,
along with the conventional Transfer Pattern ap-
proach with and without hubs. Run times are mea-
sured on a single core of an Intel i5-3360M CPU
with 2.80GHz and 16GB RAM.

4.1 Data sets The main reason for missing ex-
perimental results on public-transit network of con-
tinental size is the unavailability of data. While
more and more GTFS feeds become openly avail-
able, most of them contain only the data for one
metropolitan area. Even when aggregating all
available data for a country, coverage is often poor.
In particular, data in rural areas and long-distance
transport connecting the metropolitan areas is of-
ten missing. Exceptions are, for example, the UK,
Sweden and the Netherlands, for which feeds for
the whole country were published. Moreover, the

Germany World

stations 0.25 million 5 million ∗

connections/day 15 million 320 million ∗

Table 1: Characteristics of the public-transit net-

work of Germany (HAFAS data 2015/16) and esti-

mated values for the whole world for a single day.

complete public-transit of Germany is described in
the HAFAS data provided by Deutsche Bahn. But
creating a meaningful feed for the whole of Europe
or other continents is still out of reach. Therefore,
we will first focus on Germany to show the ability
of our new scheme to improve over the conventional
Transfer Pattern approach. Then, we extrapolate
our results to a (fictitious) transit network of the
whole world. Table 1 shows the characteristics of
our data sets; the numbers for the whole world are
based on [15]. In Table 1 and all the result ta-
bles that follow, we mark estimated / extrapolated
figures with a ∗.

4.2 Transfer Pattern baseline We first
present results for the conventional Transfer
Pattern construction. For Germany, without
hubs and using rRaptor for the profile searches,
preprocessing takes about 372 hours [5] and
produces auxiliary data of a total size of about
140 GB. This corresponds to profile search times
of about 5 seconds per station. Using hubs (and
accepting a small fraction of suboptimal results),
preprocessing times can be reduced to 350 hours
and auxiliary data size to 10 GB. In view of
the profile search times reported for Germany
when using TB [18], preprocessing times could be
reduced to 24 hours.

Considering the whole world, with an estimated
number of stations on the order of 5 million, we
expect a single run of rRaptor to take at least
100 seconds per station on average. Without hubs,
this would result in a preprocessing time of about
140,000 core hours (15 years on a single core) and a
space consumption of around 50 TB (if all stations
are reachable pair-wisely). With hubs, assuming
that searches from non-hubs visit about 5% of all
stations, the space consumption would decrease to
about 3 TB, but the preprocessing time would still



be around 20,000 core hours (over 2 years on a
single core).

4.3 Clustering We first evaluate how our clus-
tering approaches behave on the public transit net-
work of Germany.

4.3.1 Baseline The HAFAS data groups the
stations of Germany into clusters of stations from
187 distinct sub-agencies. Cluster sizes according
to this grouping range from 1 to 33,385 with an
average of 1,337 stations and a standard deviation
of 3,456. Most clusters exhibit slightly less than a
thousand stations. The total cut size (i.e., the sum
of all weights of edges with stations in different
clusters) is around 96 million.

4.3.2 Comparison of clustering approaches
We computed our own clusterings for the transit
network of Germany, using k-Means, merge-based
clustering, METIS and PUNCH as described in
Section 3.1.

Germany contains about 250,000 stations.
Thus, matching the average cluster size of around
850 in the HAFAS data leads to about 300 clus-
ters. Table 2 shows a comparison of all approaches
when fixing the number of clusters to 300. k-Means
produces good results with respect to the total cut
size and the number of border nodes. This is sur-
prising, given the limited amount of information
this approach takes as input. Merge-based cluster-
ing performs best in terms of cut size and number
of border nodes. METIS produces even slightly
less cut edges than merging, but the cut size is
much worse. Using PUNCH also did not result
in satisfactory cut sizes. PUNCH was developed
to work on unweighted graphs. We tried to in-
corporate edge weights and used a utility function
similar to merging to overcome this. But PUNCH
was still outperformed by the other approaches. As
PUNCH consists of many sub-algorithms which all
could be further tuned, there might be a way to
produce better results with PUNCH, though.

We conclude that in our implementation,
merge-based clustering leads to the clustering most
suitable for our application, since the number of
border nodes and the number of inter-cluster trips
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Figure 4: Experimental results for computing clus-
ters on Germany with merging.

indicated by the cut size determine the running
time of the profile searches in the border transfer
pattern computation phase.

4.3.3 Varying the cluster size We also tested
different cluster size bounds in the merging ap-
proach to evaluate the impact on the cut size and
the number of border nodes.

In general, very small clusters/many clusters
lead to efficient computability of local transfer pat-
terns. But then the cut size and the total number
of border stations is huge, hence the border transfer
pattern computation gets expensive. On the other
hand, very large clusters/few clusters lead to ex-
pensive profile searches in the local transfer pattern
construction process. Moreover, large clusters lead
to many border stations per cluster which renders
non-local queries (with source and target in dif-
ferent clusters) inefficient. Both extremes, namely
every station forming its own cluster and all sta-
tions being in the same cluster, yield a scheme that
is equivalent to the conventional Transfer Pattern
scheme with excellent query times but huge pre-
processing effort in terms of space and time. We
aim for a clustering which provides us with a good
trade-off between preprocessing time, space con-
sumption and query processing.

In Figure 4, merge-based clusterings are an-
alyzed for different values of U (determining the
maximal allowed number of stations in a cluster).



k-Means Merging METIS PUNCH

avg. cluster size 833 833 833 886

std. dev. cluster size 336.4 632.8 360.5 562.8

cut size 20.1 · 107 3.1 · 107 6.5 · 107 71.0 · 107

cut edges 16,124 (2.9 %) 10,887 (2.0 %) 10,828 (2.0 %) 15,162 (6.1 %)

border nodes 20,212 (8.1 %) 14,669 (5.9 %) 21,089 (8.4 %) 21,234 (8.5 %)

Table 2: Comparison of different clustering approaches on the Germany data set. The number of clusters

was set to 300, therefore the average cluster contains 833 stations. For PUNCH, the number of clusters

is not an input parameter. Reported numbers refer to a decomposition with 282 clusters.

We observe that doubling U halves the number of
clusters and the cut size but also increases the av-
erage number of border nodes per cluster. A value
of U between 1, 000 and 4, 000 leads to the best
trade-off. We will use the merge-based clustering
with U = 1, 500 as basis for the following exper-
iments. There, most clusters contain about 1,100
stations and have about 70-110 border nodes. We
will use those numbers as basis for our later extrap-
olations.

The maximum number of border stations per
cluster is 1, 242, though. Hence there are clusters
with nearly all stations being border stations. Us-
ing our post-processing scheme, we could reduce
this number to 986 while creating a few larger clus-
ters with up to 6, 109 stations. Clustering methods
that take metropolitan areas more explicitly into
consideration might help to reduce the maximum
occurring number of border stations further. Fig-
ure 5 depicts our final clustering.

4.4 Local transfer pattern computation
The next step to evaluate is the local transfer pat-
tern (LTP) computation in each cluster. Using
rRaptor, we observed an average profile search time
per station in the cluster of about 150 ms (including
backtracking of optimal routes and DAG construc-
tion). Processing a single cluster then takes about
2.5 minutes on average. For Germany, this results
in a total LTP computation time of 12.5 hours. For
TB, profile times on London (with 20,800 stations
and about 5 million connections) were reported to
be 70 ms on average [18]. The average size of our
clusters is about 15 times smaller than London.
But it is unclear if this translates to the same fac-
tor of time reduction. Assuming 10 ms per profile

Figure 5: Outcome of our transit network cluster-
ing routine.

query in a cluster, LTP computation would take 10
seconds per cluster and less than an hour in total.
Experiments on the Netherlands with an average
cluster size of 1,000 stations led to similar results.
For Sweden and the UK, the timings were even bet-
ter, since clusters contained fewer interior trips on
average. Considering the whole world, we expect
to get about 5,000 clusters with the same char-
acteristics as for the clusters in Germany. Then
the LTP computation would take about 200 hours



avg. per avg. per total

station cluster Germany World

rRaptor 150 ms 2.5 min 12.5 h 200 h

TB 10 ms ∗ 10 secs ∗ 1 h ∗ 15 h ∗

Table 3: Timings for local transfer pattern compu-

tation with different profile search algorithms.

with rRaptor, and about 15 hours with TB. Table
3 summarizes these results.

Regarding space consumption, the DAGs for
a single cluster require 4 MB on average. For
Germany, the total space consumption is 760 MB.
For the whole world, this extrapolates to around
20 GB.

4.5 Long-distance transfer pattern compu-
tation In Germany, 7,530 stations feature long-
distant transport (served e.g. by ICE/IC or Eu-
rostar trains). Almost all of these stations are also
border stations of their respective clusters. Since
we only push border stations and long-distance sta-
tions in the PQ of the Dijkstra during long-distance
pattern construction, the PQ contains 16,000 ele-
ments at most.

For Germany, a profile search using TDD
(time-dependent Dijkstra) requires 15.2 seconds on
average. Our accelerated search – using precom-
puted LTPs from the previous step, and only push-
ing long-distance and border stations in the PQ –
takes only 1.3 seconds on average. Note that we
keep the query graphs between border nodes explic-
itly in memory and do not recompute them from
scratch every time a cluster is visited. The total
time for the precomputation of the long-distance
patterns on Germany is 2.7 hours.

Estimating the number of long-distance sta-
tions for the whole world is difficult. Assuming
that, like in Germany, about 3% of the stations
world-wide feature long-distance transport (pre-
sumably a huge overestimation), we get 150,000
such stations. On Germany, evaluating a single
cluster takes 3-6 ms per profile search on aver-
age. Experiments on the Netherlands give simi-
lar results. For the whole world, we expect a sin-
gle profile search using precomputed LTPs to take
around 30 seconds. This results in a total time

# long-distance time

stations per station total

Germany 7,530 1.3 secs 2.7 h

World 150,000 ∗ 30 secs ∗ 1,200 h ∗

Table 4: Number of source stations and timings for

long-distance transfer pattern computation.

consumption of about 1250 hours for this phase.
Table 4 provides an overview of the timings for
long-distance pattern computation.

For Germany, the space consumption to store
long-distance patterns is 180 MB. For the whole
world, storing all such patterns in the naive way
requires around 60 GB. Using hubs, the space
consumption is reduced to around 4 GB.

4.6 Border transfer pattern computation
With the merge-based clustering on Germany,
about 16,000 stations are border stations. From
each of these, we ran profile searches using both
local and long-distance patterns. The average pro-
file search time was about 0.6 seconds. For long-
distance stations, no new searches are necessary,
because we do full searches for them in the previous
phase. The total time consumption for this phase
is therefore 1.25 hours. For the whole world, as-
suming the same percentage of border nodes, about
300,000 profile searches are necessary. With an ex-
trapolated running time of 15 seconds per search,
and assuming that half of the border stations are
long-distance stations, the precomputation time for
this phase would be about 600 hours.

Long-distance patterns can be deleted after
this phase. The space consumption for border
patterns is about 400 MB for Germany, with some
compression coming from the combined DAGs for
the border stations of a cluster. For the whole
world, border DAGs require about 180 GB without
hubs, and about 10 GB with hubs. Table 5
summarizes the results for the complete Transfer
Pattern construction pipeline.

4.7 Query processing We differentiate be-
tween queries with the source and the target sta-
tion in the same cluster (local queries) and with
the source and the target station in different clus-



Germany World

time space time space

scalable TP, local patterns 12.5 h 760 MB 200 h ∗ 20 GB ∗

scalable TP, long-distance patterns 2.7 h (180 MB) 1,250 h ∗ ( 4 GB) ∗

scalable TP, border patterns 1.3 h 400 MB 600 h ∗ 10 GB ∗

scalable TP, total 16.5 h 1160 MB 2,050 h ∗ 30 GB ∗

conventional TP, without hubs 372 h 140 GB 140,000 h ∗ 50 TB ∗

conventional TP, with hubs 350 h 2 GB 20,000 h ∗ 3 TB ∗

Table 5: Overview of time and space consumption of the different steps of our new scalable Transfer

Patterns precomputation. The space consumption for the long-distance patterns is enclosed in

parantheses, since they are only required during preprocessing but not for query processing. The last

two lines show numbers for the conventional Transfer Patterns approach; note that with hubs, a small

fraction of the results may be sub-optimal.

local non-local

convex non-convex Germany World

edges 30 380 4,500 15,000 ∗

time 0.1 ms 5 ms 32 ms 200 ms ∗

Table 6: Number of edges in the query graph and

runtime for different kind of queries. Values are

averaged over 1,000 runs with randomly selected

source and target station.

ters (non-local queries). For a local query, it is also
relevant whether the cluster is convex or not. Table
6 shows all results.

For Germany, local queries in convex clusters
take 0.1 ms on average, with a query graph contain-
ing less than 30 edges on average. For non-convex
clusters (92 out of 300), query times are 5.0 ms
on average, and query graphs contain around 380
edges on average. Actually, in a non-convex cluster,
on average over 90% of all pairs of source/target
stations do not demand the addition of connections
between border nodes. One could check this prop-
erty for all station pairs in the preprocessing and
then flag non-convex pairs. The query times for
such “convex station pairs” would then be as fast
as for station pairs in convex clusters.

For non-local queries, the combined query
graphs contains about 3,500 edges on average.
Constructing those graphs from scratch for every
query takes about 20 ms on average. If the query
graphs between clusters are cached, they can be

merged with the local pattern from the source
to the border stations and from the border sta-
tions to the target in 2 ms on average. The time-
dependent Dijkstra computation on the final query
graph takes 30 ms on average. This results in a
total average query time of 50 ms or 32 ms, respec-
tively.

For the whole world, query times are expected
to be similar to the reported results for Germany.
In particular, note that the time to answer local
queries does not depend on how large the network
is in total. For non-local queries, the patterns be-
tween border stations might contain more transfer
nodes. Also, using hubs might introduce an addi-
tional chunk of nodes and edges. But even when we
pessimistically expect that for each pair of border
nodes 3 additional nodes are created in the query
graph (on Germany, it is 0.3 nodes per border sta-
tion pair), the query graph would contain around
15,000 edges on average. The average total query
time is then around 200 milliseconds.

5 Conclusions and Future Work

We introduced a public-transit route planning
scheme that is based on clustering the network but
still produces the full set of Pareto-optimal solu-
tions regarding earliest arrival time and number of
transfers. On the transit network of Germany, our
new approach reduces the preprocessing time by a
factor of more than 20 and the space consumption
by factor of more than 100, with exact query re-
sults in all cases. Using other profile search meth-



ods than rRaptor, the preprocessing times could
be further improved. Our extrapolated values for
the whole world predict even more dramatic reduc-
tions: down to a very reasonable 2,000 hour pre-
computation and 30 GB space consumption. We
are aware that the structure of transit networks in
other parts of the world differs significantly from
the structure of the German network. However, we
consider Germany a worst-case basis for extrapo-
lation due to the generally high network density,
which makes the partitioning into well-separated
sub-networks harder. Of course, as soon as larger-
scale public-transit data is openly available, exper-
iments should be conducted to check the validity
of our extrapolations.

In future work, a clustering approach which
is designed to produce (possibly overlapping) con-
vex clusters could accelerate the preprocessing and
lead to even better query times for local (intra-
cluster) queries. An important open problem is
to deal with those (few) clusters with a relatively
large number of border nodes. These do not sig-
nificantly affect average query times, but are crit-
ical for the maximum query time. One promis-
ing approach could be a more metropolitan-aware
clustering that allows some clusters to be signifi-
cantly larger than others if this helps to reduce the
maximal number of border nodes. We also con-
sider it worth investigating which search techniques
besides time-dependent Dijkstra searches allow for
the incorporation of precomputed transfer patterns
into the profile search. This could further reduce
the profile-search times in the precomputation of
the long-distance and border patterns.
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